论文标题

基于单数扰动的滞后模型的爆炸分析

Blowup analysis of a hysteresis model based upon singular perturbations

论文作者

Kristiansen, Kristian Uldall

论文摘要

在本文中,我们提供了基于单数扰动的新滞后模型的几何分析。在这里,滞后是指分段平滑微分方程的一种正规化,其中轨迹的过去(在不连续集的一小部分)确定了当前的矢量场。实际上,在不连续性{消失}邻居的范围内,磁滞以适当的意义与Filippov的滑动矢量场相聚。然而,最近{(2022)} {Bonet和Seara}表明,与正规化相反,滞后也会导致放牧分叉的正则化,即使在两个维度上也是如此。我们在本文中分析了滞后模型,该论文是由{Bonet等人在2017年的一篇论文中开发的,是试图统一分段平滑系统的不同正规化的一种尝试 - 涉及两个奇异的扰动参数,并包括慢速效率和非态效应的组合。因此,从奇异扰动理论的角度来看,该模型的描述即使在二维中也充满挑战。使用爆炸作为我们的主要技术工具,我们证明存在一个不变的圆柱体,该圆柱体在方位角方向上携带快速动力学,并且轴向沿轴向方向缓慢漂移。我们发现,较慢的漂移是由Filippov的滑动{vector-field}给出的。此外,在放牧的情况下,我们确定了两个重要的参数制度,将模型与平滑(通过鞍形节点的分叉)和磁滞(通过折叠式鞍座和新的回归机制引起的混乱动力学)相关联。

In this paper, we provide a geometric analysis of a new hysteresis model that is based upon singular perturbations. Here hysteresis refers to a type of regularization of piecewise smooth differential equations where the past of a trajectory, in a small neighborhood of the discontinuity set, determines the vector-field at present. In fact, in the limit where the neighborhood of the discontinuity {vanishes}, hysteresis converges in an appropriate sense to Filippov's sliding vector-field. Recently {(2022)}, however, {Bonet and Seara} showed that hysteresis, in contrast to regularization through smoothing, leads to chaos in the regularization of grazing bifurcations, even in two dimensions. The hysteresis model we analyze in the present paper -- which was developed by {Bonet et al in a paper from 2017} as an attempt to unify different regularizations of piecewise smooth systems -- involves two singular perturbation parameters and includes a combination of slow-fast and nonsmooth effects. The description of this model is therefore -- from the perspective of singular perturbation theory -- challenging, even in two dimensions. Using blowup as our main technical tool, we prove existence of an invariant cylinder carrying fast dynamics in the azimuthal direction and a slow drift in the axial direction. We find that the slow drift is given by Filippov's sliding {vector-field} to leading order. Moreover, in the case of grazing, we identify two important parameter regimes that relate the model to smoothing (through a saddle-node bifurcation of limit cycles) and hysteresis (through chaotic dynamics, due to a folded saddle and a novel return mechanism).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源