论文标题
离子尺寸对具有pH依赖性电荷密度的软纳米通道中静电和电渗的特性的影响
Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density
论文作者
论文摘要
我们报告了一个具有pH依赖性电荷密度的软纳米通道中的离子尺寸效应的理论研究。考虑到离子大小以及接枝在电解质中的刚性表面上的电荷聚电解质层的pH依赖性,我们开发了基于自由能的平均场理论。通过数值计算离子数密度和静电电位来评估离子大小对软纳米通道中性能的影响。我们证明,与点状离子不同,对于有限的离子大小,聚电解质层内的可费解位点的均匀分布会导致离子数密度的非物理不连续性,而不仅对氢离子,而且对于其他类型的离子。结果表明,必须与点状离子相同的立方空间分布,以确保在聚电解质层 - 刚性实心界面处的离子数密度和零离子传输的连续性。我们发现,考虑有限的离子大小会导致静电势和电渗透速度的增加以及离子数密度的降低。更重要的是,我们证明,在聚电解质层中,聚电解质电荷密度的pH依赖性使氢离子的积累比电解质中的其他阳性离子物种强,并且通过考虑有限离子大小而进一步增强了这种趋势。此外,我们讨论对有限离子大小的考虑如何影响各种参数在静电和电渗透特性上的作用。
We report a theoretical study of ion size effect on various properties in a soft nanochannel with pH-dependent charge density. We develop a free energy based mean-field theory taking into account ion size as well as pH-dependence of charged polyelectrolyte layer grafted on a rigid surface in an electrolyte. The influence of ion size on properties in a soft nanochannel is evaluated by numerically calculating ion number densities and electrostatic potential. We demonstrate that unlike in point-like ions, for finite sizes of ions, a uniform distribution of chargeable sites within the polyelectrolyte layer causes unphysical discontinuities in ion number densities not only for hydrogen ion but also for other kinds of ions. It is shown that the same cubic spatial distribution of chargeable sites as for point-like ions is necessary to ensure continuity of ion number density and zero ion transport at the polyelectrolyte layer - rigid solid interface. We find that considering finite ion size causes an increase in electrostatic potential and electroosmotic velocity and a decrease in ion number densities. More importantly, we demonstrate that in polyelectrolyte layer, pH-dependence of polyelectrolyte charge density makes accumulation of hydrogen ions stronger than for the other positive ion species in the electrolyte and such a tendency is further enhanced by considering finite ion size. In addition, we discuss how consideration of finite ion size affects the role of various parameters on electrostatic and electroosmotic properties.