论文标题

偏见的语义精炼

Bias-Eliminated Semantic Refinement for Any-Shot Learning

论文作者

Feng, Liangjun, Zhao, Chunhui, Li, Xi

论文摘要

当训练样本稀缺时,语义嵌入技术,即描述具有属性的类标签的语义嵌入技术,提供了一种条件,可以通过从可见对象中传输知识来为看不见的对象生成视觉特征。但是,语义描述通常以外部范式(例如手动注释)获得,从而导致描述和视觉特征之间的一致性较弱。在本文中,我们完善了用于任何拍摄的学习任务的粗粒粒度语义描述,即,零射击学习(ZSL),广义零射击学习(GZSL)和少数射击学习(FSL)。一种新的模型,即语义改进的Wasestein生成对抗网络(SRWGAN)模型,设计采用拟议的多头表示和分层对准技术设计。与传统的方法不同,进行语义完善的目的是确定偏见的偏见条件,以造成分离级特征的产生,并且适用于电感和跨传导设置。我们在六个基准数据集上广泛评估模型性能,并观察到任何记录学习的最新结果;例如,在标准GZSL设置中,Caltech UCSD鸟(CUB)数据集获得了70.2%的谐波精度和牛津花(FLO)数据集的82.2%的谐波精度。还提供了各种可视化,以显示偏见的Srwgan产生。我们的代码可用。

When training samples are scarce, the semantic embedding technique, ie, describing class labels with attributes, provides a condition to generate visual features for unseen objects by transferring the knowledge from seen objects. However, semantic descriptions are usually obtained in an external paradigm, such as manual annotation, resulting in weak consistency between descriptions and visual features. In this paper, we refine the coarse-grained semantic description for any-shot learning tasks, ie, zero-shot learning (ZSL), generalized zero-shot learning (GZSL), and few-shot learning (FSL). A new model, namely, the semantic refinement Wasserstein generative adversarial network (SRWGAN) model, is designed with the proposed multihead representation and hierarchical alignment techniques. Unlike conventional methods, semantic refinement is performed with the aim of identifying a bias-eliminated condition for disjoint-class feature generation and is applicable in both inductive and transductive settings. We extensively evaluate model performance on six benchmark datasets and observe state-of-the-art results for any-shot learning; eg, we obtain 70.2% harmonic accuracy for the Caltech UCSD Birds (CUB) dataset and 82.2% harmonic accuracy for the Oxford Flowers (FLO) dataset in the standard GZSL setting. Various visualizations are also provided to show the bias-eliminated generation of SRWGAN. Our code is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源