论文标题

使用大语言模型预测人类的相似性判断

Predicting Human Similarity Judgments Using Large Language Models

论文作者

Marjieh, Raja, Sucholutsky, Ilia, Sumers, Theodore R., Jacoby, Nori, Griffiths, Thomas L.

论文摘要

相似性判断为访问心理表征提供了良好的方法,并在心理学,神经科学和机器学习中提供了应用。但是,随着比较的数量在刺激数量中二次增长,自然数据集的收集相似性判断对于自然主义数据集可能非常昂贵。解决此问题的一种方法是构建依靠更容易访问的代理来预测相似性的近似程序。在这里,我们利用语言模型和在线招聘方面的最新进展,提出了一种有效的领域一般程序,以根据文本描述来预测人类的相似性判断。从直觉上讲,类似的刺激可能会引起相似的描述,从而使我们能够使用描述相似性来预测成对的相似性判断。至关重要的是,所需的描述数量仅随刺激的数量线性增长,从而大大减少了所需的数据量。我们在六个自然主义图像数据集上测试了此过程,并表明我们的模型基于视觉信息优于以前的方法。

Similarity judgments provide a well-established method for accessing mental representations, with applications in psychology, neuroscience and machine learning. However, collecting similarity judgments can be prohibitively expensive for naturalistic datasets as the number of comparisons grows quadratically in the number of stimuli. One way to tackle this problem is to construct approximation procedures that rely on more accessible proxies for predicting similarity. Here we leverage recent advances in language models and online recruitment, proposing an efficient domain-general procedure for predicting human similarity judgments based on text descriptions. Intuitively, similar stimuli are likely to evoke similar descriptions, allowing us to use description similarity to predict pairwise similarity judgments. Crucially, the number of descriptions required grows only linearly with the number of stimuli, drastically reducing the amount of data required. We test this procedure on six datasets of naturalistic images and show that our models outperform previous approaches based on visual information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源