论文标题

转移Q学习

Transferred Q-learning

论文作者

Chen, Elynn Y., Jordan, Michael I., Li, Sai

论文摘要

我们考虑使用来自目标加固学习(RL)任务的样本以及来自不同但相关的RL任务的源样本,考虑使用知识转移的$ Q $ - 学习。我们建议通过离线源研究进行批处理和在线$ Q $的转移学习算法。拟议的转移$ q $ - 学习算法包含一个新颖的重新定位步骤,该步骤可以使RL任务中的多个步骤沿多个步骤进行垂直信息,除了通常的水平信息收集作为转移学习(TL)以进行监督学习。我们通过在离线RL传输中显示出$ Q $函数估计的融合率更快,并且在某些相似性假设下,在离线到Online RL转移中的较低遗憾中,我们建立了TL的第一个理论理由。提供了合成数据集和实际数据集的经验证据,以支持提出的算法和我们的理论结果。

We consider $Q$-learning with knowledge transfer, using samples from a target reinforcement learning (RL) task as well as source samples from different but related RL tasks. We propose transfer learning algorithms for both batch and online $Q$-learning with offline source studies. The proposed transferred $Q$-learning algorithm contains a novel re-targeting step that enables vertical information-cascading along multiple steps in an RL task, besides the usual horizontal information-gathering as transfer learning (TL) for supervised learning. We establish the first theoretical justifications of TL in RL tasks by showing a faster rate of convergence of the $Q$ function estimation in the offline RL transfer, and a lower regret bound in the offline-to-online RL transfer under certain similarity assumptions. Empirical evidences from both synthetic and real datasets are presented to back up the proposed algorithm and our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源