论文标题

基于提升的多类分段算法:设计,收敛分析和实施医学成像中的应用

Lifting-based variational multiclass segmentation algorithm: design, convergence analysis, and implementation with applications in medical imaging

论文作者

Gruber, Nadja, Schwab, Johannes, Court, Sebastien, Gizewski, Elke, Haltmeier, Markus

论文摘要

我们提出,分析并实现一种多类分割方案,该方案将给定图像划分为具有特定特性的多个区域。我们的方法通过将来自不同通道的信息结合信息的能量功能组合来确定编码分割区域的多个函数。可以通过使用特定的多通道滤波将图像提升到更高维度的特征空间来获得多通道图像数据,也可以通过所考虑的成像模式(例如RGB图像或多模式医学数据)提供。实验结果表明,该方法在各种情况下都表现良好。特别是,分别针对涉及大脑脓肿和肿瘤生长的两种医学应用提供了有希望的结果。作为主要的理论贡献,我们证明了所提出的能量功能的全球最小化体的存在,并表明了其相对于嘈杂输入的稳定性和收敛性。特别是,这些结果也适用于二进制分割的特殊情况,在这种特殊情况下,这些结果也很新。

We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源