论文标题

边缘铁磁范围的重新归一化小组研究

Renormalization group study of marginal ferromagnetism

论文作者

Cavagna, Andrea, Culla, Antonio, Grigera, Tomás S.

论文摘要

在研究生物群体的集体运动时,一个有用的理论框架是铁磁系统的框架,其中比对相互作用是个体中有效模仿的替代品。在这种情况下,Starling Flocks中速度波动的无标度相关性的实验发现对常见的统计物理智慧构成了挑战,就像在标准铁磁模型的有序阶段一样,具有$ \ MATHRM {O}(O}(O}(N)$对称性,订单参数的模量具有有限的相关长度。为了理解这种异常,已经提出了一种新型的铁磁理论,在该理论中,裸露电势的第二个衍生物(即\ \是边际)沿阶参数的模量为零。边缘模型表现出零温度的临界点,其中模量相关长度差异,因此可以通过简单地降低温度来提高相关性和集体秩序。在这里,我们得出了一个有效的场理论,该理论描述了接近$ t = 0 $临界点的边际模型,并在动量壳方法中以一个环的一个环计算重新归一化组方程。我们发现了一个非平凡的场景,因为立方和四分之一的顶点并不在红外限制中消失,而耦合常数有效地调节了指数$ν$和$η$具有上部关键尺寸$ d_c = 2 $,因此在三个维度中,关键的代价在三个维度中获得了自由的价值,$ n $ $ c $ c $ c $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ n = 0 $ c。通过对模量易感性在三个维度上的模敏性的研究来验证这种理论方案,其中标准有限尺寸的比例关系必须适应$ d> d_c $的情况。数值数据充分证实了我们的理论结果。

When studying the collective motion of biological groups a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to the common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with $\mathrm{O}(n)$ symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly a novel ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e.\ it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the $T=0$ critical point and calculate the renormalization group equations at one loop within a momentum shell approach. We discover a non-trivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents $ν$ and $η$ have upper critical dimension $d_c=2$, so that in three dimensions the critical exponents acquire their free values, $ν=1/2$ and $η=0$. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of $d>d_c$. The numerical data fully confirm our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源