论文标题

高斯过程驱动微分方程的伴随推理

Adjoint-aided inference of Gaussian process driven differential equations

论文作者

Gahungu, Paterne, Lanyon, Christopher W, Alvarez, Mauricio A, Bainomugisha, Engineer, Smith, Michael, Wilkinson, Richard D.

论文摘要

线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,而兴趣在于使用系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展来使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了对普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近近似于真实的强迫。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度)的点估计。

Linear systems occur throughout engineering and the sciences, most notably as differential equations. In many cases the forcing function for the system is unknown, and interest lies in using noisy observations of the system to infer the forcing, as well as other unknown parameters. In differential equations, the forcing function is an unknown function of the independent variables (typically time and space), and can be modelled as a Gaussian process (GP). In this paper we show how the adjoint of a linear system can be used to efficiently infer forcing functions modelled as GPs, using a truncated basis expansion of the GP kernel. We show how exact conjugate Bayesian inference for the truncated GP can be achieved, in many cases with substantially lower computation than would be required using MCMC methods. We demonstrate the approach on systems of both ordinary and partial differential equations, and show that the basis expansion approach approximates well the true forcing with a modest number of basis vectors. Finally, we show how to infer point estimates for the non-linear model parameters, such as the kernel length-scales, using Bayesian optimisation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源