论文标题

神经捆的扩散:关于异质和过度厚度的拓扑视角

Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

论文作者

Bodnar, Cristian, Di Giovanni, Francesco, Chamberlain, Benjamin Paul, Liò, Pietro, Bronstein, Michael M.

论文摘要

通过将矢量空间和线性地图分配给节点和边缘,蜂窝绳层为“几何”结构配备了“几何”结构。图形神经网络(GNNS)隐式假设具有微不足道的基础捆的图。该选择反映在图形拉普拉斯运算符的结构中,相关扩散方程的属性以及离散该方程的卷积模型的特性。在本文中,我们使用细胞捆的理论来表明该图的基本几何形状与杂物性环境中GNN的性能及其过度厚度的行为深深联系。通过考虑越来越笼统的滑轮的层次结构,我们研究了分支扩散过程在无限时间限制中实现类别分离的线性分离的能力。同时,我们证明,当堤防是非平凡的,离散的参数扩散过程时,对渐近行为的控制比GNN更大。从实际方面来说,我们研究如何从数据中学到滑轮。所得的捆出扩散模型具有许多理想的特性,可以解决经典图扩散方程(以及相应的GNN模型)的局限性,并在异性设置中获得竞争结果。总体而言,我们的工作提供了GNNS和代数拓扑之间的新联系,并且这两个领域都将很感兴趣。

Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源