论文标题
通用Hopfield网络:单杆关联内存模型的一般框架
Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models
论文作者
论文摘要
文献中已经提出了许多关联记忆的神经网络模型。其中包括经典的Hopfield网络(HNS),稀疏分布式记忆(SDM)以及最近的现代连续Hopfield Networks(MCHNS),该网络在机器学习中具有与自我注意力的密切联系。在本文中,我们提出了一个一般框架,用于理解此类内存网络的操作,例如三个操作的顺序:相似性,分离和投影。我们将所有这些记忆模型作为我们的一般框架的实例,具有不同的相似性和分离函数。我们将Krotov等人(2020)的数学框架扩展到使用神经元之间仅具有二阶相互作用的神经网络动力学来表达通用的关联存储模型,并得出了一个通用能量函数,该函数是动力学的lyapunov函数。最后,使用我们的框架,我们从经验上研究了这些关联记忆模型使用不同相似性函数的能力,超出了DOT产品相似性度量,并从经验上证明,欧几里得或曼哈顿距离距离相似性指标在实践中在许多任务中的实践表现较大,从而启用比现有模型更强大的记忆能力。
A large number of neural network models of associative memory have been proposed in the literature. These include the classical Hopfield networks (HNs), sparse distributed memories (SDMs), and more recently the modern continuous Hopfield networks (MCHNs), which possesses close links with self-attention in machine learning. In this paper, we propose a general framework for understanding the operation of such memory networks as a sequence of three operations: similarity, separation, and projection. We derive all these memory models as instances of our general framework with differing similarity and separation functions. We extend the mathematical framework of Krotov et al (2020) to express general associative memory models using neural network dynamics with only second-order interactions between neurons, and derive a general energy function that is a Lyapunov function of the dynamics. Finally, using our framework, we empirically investigate the capacity of using different similarity functions for these associative memory models, beyond the dot product similarity measure, and demonstrate empirically that Euclidean or Manhattan distance similarity metrics perform substantially better in practice on many tasks, enabling a more robust retrieval and higher memory capacity than existing models.