论文标题
制药中的量子计算:一种多层嵌入方法
Quantum Computing in Pharma: A Multilayer Embedding Approach for Near Future Applications
论文作者
论文摘要
量子计算机是特殊用途机器,预计将在模拟强相关的化学系统方面特别有用。量子计算机以完全量子的机械方式在活动空间内处理中等数量的轨道方面出色。我们在Rigetti的Aspen-11 QPU上的A(2,2)活动空间中介绍了F $ _2 $的量子相估计计算。尽管这是一个有希望的开始,但它还强调了仔细选择量子计算机处理的轨道空间的必要性。在这项工作中,描述了一种用于自动选择此类活动空间的方案,并同时介绍了使用量子相估计(QPE)和变异量子eigensolver(VQE)算法获得的模拟结果,并与减法方法结合使用,以启用环境的准确描述。活跃的占用空间是从分子化学相关片段上的轨道中选择的,而相应的虚拟空间是根据与扰动理论计算得出的相互作用的大小选择的。然后将该方案应用于两种药物相关性的化学系统:酶[Fe]氢化酶和光酶Temoporfin。虽然当前可容纳量子计算处理的活动空间的大小不足以证明量子优势,但此处概述的过程适用于任何活动空间大小,包括那些超出经典计算的空间大小。
Quantum computers are special purpose machines that are expected to be particularly useful in simulating strongly correlated chemical systems. The quantum computer excels at treating a moderate number of orbitals within an active space in a fully quantum mechanical manner. We present a quantum phase estimation calculation on F$_2$ in a (2,2) active space on Rigetti's Aspen-11 QPU. While this is a promising start, it also underlines the need for carefully selecting the orbital spaces treated by the quantum computer. In this work, a scheme for selecting such an active space automatically is described and simulated results obtained using both the quantum phase estimation (QPE) and variational quantum eigensolver (VQE) algorithms are presented and combined with a subtractive method to enable accurate description of the environment. The active occupied space is selected from orbitals localized on the chemically relevant fragment of the molecule, while the corresponding virtual space is chosen based on the magnitude of interactions with the occupied space calculated from perturbation theory. This protocol is then applied to two chemical systems of pharmaceutical relevance: the enzyme [Fe] hydrogenase and the photosenzitizer temoporfin. While the sizes of the active spaces currently amenable to a quantum computational treatment are not enough to demonstrate quantum advantage, the procedure outlined here is applicable to any active space size, including those that are outside the reach of classical computation.