论文标题
非局部非线性梯度流的大时间行为
Large time behavior for a nonlocal nonlinear gradient flow
论文作者
论文摘要
我们研究非线性和非局部方程的较大时间行为$$ v_t+(-Δ_p)^sv = f \,,$ $,其中$ p \ in(1,2)\ cup(2,\ infty)$,$ s \ in(0,1) \ int _ {\ Mathbb {r}^n} \ frac {| v(x,x,t)-v(x+y,t)|^{p-2}(v(x,x,x,t)-v(x+y,t)}} {| y | y | y |^{n+sp}}}} \,dy。 $$,此方程作为分数Sobolev空间中的梯度流。我们将尖锐的衰变估计值为$ t \至\ infty $。这些证明是基于P. juutinen和P. lindqvist先前使用的J. Moser精神的迭代方法。
We study the large time behavior of the nonlinear and nonlocal equation $$ v_t+(-Δ_p)^sv=f \, , $$ where $p\in (1,2)\cup (2,\infty)$, $s\in (0,1)$ and $$ (-Δ_p)^s v\, (x,t)=2 \,\text{pv} \int_{\mathbb{R}^n}\frac{|v(x,t)-v(x+y,t)|^{p-2}(v(x,t)-v(x+y,t))}{|y|^{n+sp}}\, dy. $$ This equation arises as a gradient flow in fractional Sobolev spaces. We obtain sharp decay estimates as $t\to\infty$. The proofs are based on an iteration method in the spirit of J. Moser previously used by P. Juutinen and P. Lindqvist.