论文标题
与有机电化学晶体管的多模式传感和神经形态计算的分子尺度整合
Molecular-scale Integration of Multi-modal Sensing and Neuromorphic Computing with Organic Electrochemical Transistors
论文作者
论文摘要
摘要:在效率和足迹方面,具有融合感应,记忆和处理功能的仿生学习,内存和处理功能优于硅芯片上的人工神经网络。但是,仿生学习的数字硬件实现遭受了传感器和处理核心的设备异质性,这会造成大型硬件,能源和时间开销。在这里,我们提出了一种通用解决方案,该解决方案是使用有机电化学晶体管同时进行多模式感测,记忆和处理,并具有设计的建筑和量身定制的通道形态,选择性离子注射到晶体/无定形区域中。所得设备可以作为显示多模式传感的挥发性受体,或者是具有创纪录的10位模拟状态的非挥发性突触,低开关随机性和良好的保留,而无需集成任何额外的设备。此类设备的均匀整合使仿生的学习功能,例如通过储层计算进行条件反射和实时心脏病诊断,这说明了对未来智能智能健康信息学的希望。
Abstract: Bionic learning with fused sensing, memory and processing functions outperforms artificial neural networks running on silicon chips in terms of efficiency and footprint. However, digital hardware implementation of bionic learning suffers from device heterogeneity in sensors and processing cores, which incurs large hardware, energy and time overheads. Here, we present a universal solution to simultaneously perform multi-modal sensing, memory and processing using organic electrochemical transistors with designed architecture and tailored channel morphology, selective ion injection into the crystalline/amorphous regions. The resultant device work as either a volatile receptor that shows multi-modal sensing, or a non-volatile synapse that features record-high 10-bit analog states, low switching stochasticity and good retention without the integration of any extra devices. Homogeneous integration of such devices enables bionic learning functions such as conditioned reflex and real-time cardiac disease diagnose via reservoir computing, illustrating the promise for future smart edge health informatics.