论文标题

$ \ mathbb {q} $ - fano三倍和laurent倒置

$\mathbb{Q}$-Fano threefolds and Laurent inversion

论文作者

Heuberger, Liana

论文摘要

我们构建了非toric $ \ mathbb {q} $ - 阶乘终端fano($ \ mathbb {q} $ - fano)的家族三倍的condimension $ \ geq 20 $,对应于54种突变类别的最大突变的突变类的突变类别。从镜像对称性的角度来看,它们是最高的codimension(非作品)$ \ mathbb {q} $ - Fano品种,我们目前可以为其建立Fano/Landau-Ginzburg通信。我们构造46个额外的$ \ mathbb {q} $ - fano三倍,具有19到10之间的新示例的编纂。其中一些品种将作为感谢您的完整交集,而其他作为pfaffian品种。

We construct families of non-toric $\mathbb{Q}$-factorial terminal Fano ($\mathbb{Q}$-Fano) threefolds of codimension $\geq 20$ corresponding to 54 mutation classes of rigid maximally mutable Laurent polynomials. From the point of view of mirror symmetry, they are the highest codimension (non-toric) $\mathbb{Q}$-Fano varieties for which we can currently establish the Fano/Landau-Ginzburg correspondence. We construct 46 additional $\mathbb{Q}$-Fano threefolds with codimensions of new examples ranging between 19 and 10. Some of these varieties will be presented as toric complete intersections, and others as Pfaffian varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源