论文标题
$ \ mathbb {q} $ - fano三倍和laurent倒置
$\mathbb{Q}$-Fano threefolds and Laurent inversion
论文作者
论文摘要
我们构建了非toric $ \ mathbb {q} $ - 阶乘终端fano($ \ mathbb {q} $ - fano)的家族三倍的condimension $ \ geq 20 $,对应于54种突变类别的最大突变的突变类的突变类别。从镜像对称性的角度来看,它们是最高的codimension(非作品)$ \ mathbb {q} $ - Fano品种,我们目前可以为其建立Fano/Landau-Ginzburg通信。我们构造46个额外的$ \ mathbb {q} $ - fano三倍,具有19到10之间的新示例的编纂。其中一些品种将作为感谢您的完整交集,而其他作为pfaffian品种。
We construct families of non-toric $\mathbb{Q}$-factorial terminal Fano ($\mathbb{Q}$-Fano) threefolds of codimension $\geq 20$ corresponding to 54 mutation classes of rigid maximally mutable Laurent polynomials. From the point of view of mirror symmetry, they are the highest codimension (non-toric) $\mathbb{Q}$-Fano varieties for which we can currently establish the Fano/Landau-Ginzburg correspondence. We construct 46 additional $\mathbb{Q}$-Fano threefolds with codimensions of new examples ranging between 19 and 10. Some of these varieties will be presented as toric complete intersections, and others as Pfaffian varieties.