论文标题

带标量或矢量头发的黑洞内部的最终Kasner政权

The final Kasner regime inside black holes with scalar or vector hair

论文作者

Henneaux, Marc

论文摘要

对一般各向异性和不均匀的初始条件进行了分析,分析了带电标量或矢量头发的黑洞内部公制的最终(接近奇异性)动力学行为。这些解决方案与超导性的全息相关。结果表明,动力学属于“宇宙台球”描述的范围,并且在这两种情况下,相应的双曲线台球区域都有无限的体积,因此系统最终会降低到最终的Kasner制度。对于大量的矢量头发,结论之所以存在,是因为纵向模式与标量场的作用相同。然而,存在一个零值的零子集,其特征是消失的纵向模式,表现出混乱的行为,并具有无限数量的BKL振荡,这是一种奇异性。

The final (close to the singularity) dynamical behavior of the metric inside black holes with massive charged scalar or vector hair is analyzed for general anisotropic and inhomogeneous initial conditions. These solutions are relevant to a holographic realization of superconductivity. It is shown that the dynamics falls within the scope of the "cosmological billiard" description and that in both cases, the corresponding hyperbolic billiard region has infinite volume so that the system ultimately settles down to a final Kasner regime. For massive vector hair, the conclusion holds because the longitudinal mode plays the same role as a scalar field. There exists, however, a measure-zero subset of solutions characterized by vanishing longitudinal modes that exhibit a chaotic behavior with an infinite number of BKL oscillations as one goes to the singularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源