论文标题
基于CBCT的自适应放射治疗对测试时间优化(TTO)进行分割
Segmentation by Test-Time Optimization (TTO) for CBCT-based Adaptive Radiation Therapy
论文作者
论文摘要
在线自适应放射疗法(ART)需要在大多数是锥形梁计算机断层扫描(CBCT)图像中准确有效的目标体积和器官 - 风险(OARS)的自动分割。通过基于传统或深度学习(DL)的可变形图像注册(DIR),从预处理计划CT(PCT)中传播专家绘制的轮廓可以在许多情况下取得改进的结果。典型的基于DL的DIR模型是基于人口的,即接受针对患者人群的数据集培训,因此它们可能会受到概括性问题的影响。在本文中,我们提出了一种称为测试时间优化(TTO)的方法,以完善预先训练的基于DL的DIR人群模型,首先是针对每个单独的测试患者,然后逐步用于在线艺术治疗的每一部分。我们提出的方法不太容易受到普遍性问题的影响,因此可以通过提高模型的准确性,尤其是对于异常值来改善不同基于DL的DIR模型的整体性能。我们的实验使用了来自239例头颈鳞状细胞癌患者的数据来测试所提出的方法。首先,我们通过精炼经过训练的人群模型来获得39个个性化模型,培训了有200名患者的人群模型,然后将TTO应用于其余39名测试患者。我们将每个个性化模型与种群模型在分割准确性方面进行了比较。与最先进的结构voxelmorph相比,TO平均TTO至少有0.05 DSC改善或2 mM HD95的患者数量为39名测试患者中的10个。从预训练的人群模型中使用TTO得出个性化模型的平均时间约为四分钟。当将个性化模型调整为同一患者的后期部分时,平均时间会减少到大约一分钟,并且准确性略有提高。
Online adaptive radiotherapy (ART) requires accurate and efficient auto-segmentation of target volumes and organs-at-risk (OARs) in mostly cone-beam computed tomography (CBCT) images. Propagating expert-drawn contours from the pre-treatment planning CT (pCT) through traditional or deep learning (DL) based deformable image registration (DIR) can achieve improved results in many situations. Typical DL-based DIR models are population based, that is, trained with a dataset for a population of patients, so they may be affected by the generalizability problem. In this paper, we propose a method called test-time optimization (TTO) to refine a pre-trained DL-based DIR population model, first for each individual test patient, and then progressively for each fraction of online ART treatment. Our proposed method is less susceptible to the generalizability problem, and thus can improve overall performance of different DL-based DIR models by improving model accuracy, especially for outliers. Our experiments used data from 239 patients with head and neck squamous cell carcinoma to test the proposed method. Firstly, we trained a population model with 200 patients, and then applied TTO to the remaining 39 test patients by refining the trained population model to obtain 39 individualized models. We compared each of the individualized models with the population model in terms of segmentation accuracy. The number of patients with at least 0.05 DSC improvement or 2 mm HD95 improvement by TTO averaged over the 17 selected structures for the state-of-the-art architecture Voxelmorph is 10 out of 39 test patients. The average time for deriving the individualized model using TTO from the pre-trained population model is approximately four minutes. When adapting the individualized model to a later fraction of the same patient, the average time is reduced to about one minute and the accuracy is slightly improved.