论文标题

拓扑之间的关系

Relations among topological solitons

论文作者

Nitta, Muneto

论文摘要

我们在各个方面阐明了拓扑孤子之间的关系:域壁,非亚伯涡流,磁性单极和Yang-Mills Instanton,以及(非亚伯利亚语)正弦 - 戈登索尼顿,婴儿Skyrmion(Lump)和Skyrmion。我们使用有效的理论技术或模量近似构建了由域壁,涡流,磁性单极和Yang-Mills Instanton(壁 - 涡流 - 单位)组成的复合配置。从这样的复合材料中删除一些孤子,我们以孤子的形式获得了所有可能的复合孤子,包括所有先前已知的构型,从而产生了拓扑孤子之间的关系。

We clarify relations among topological solitons in various dimensions: a domain wall, non-Abelian vortex, magnetic monopole and Yang-Mills instanton, together with a (non-Abelian) sine-Gordon soliton, baby Skyrmion (lump) and Skyrmion. We construct a composite configuration consisting of a domain wall, vortex, magnetic monopole and Yang-Mills instanton (wall-vortex-monopole-instanton) using the effective theory technique or moduli approximation. Removing some solitons from such a composite, we obtain all possible composite solitons in the form of solitons within a soliton, including all the previously known configurations, yielding relations among topological solitons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源