论文标题

预测故障故障的时间限制

The temporal limits of predicting fault failure

论文作者

Wang, Kun, Johnson, Christopher W., Bennett, Kane C., Johnson, Paul A.

论文摘要

使用地震排放的机器学习模型可以预测瞬时断层特征,例如实验室实验中的位移和地球缓慢滑移。在这里,我们解决了实验实验的声发射(AE)是否包含有关近乎未来摩擦行为的信息。该方法使用包含变压器层的卷积编码器。我们用作输入逐渐较大的AE输入时间窗口,并逐步使用较大的输出摩擦时间窗口。来自变压器的注意力图用于解释AE的哪些区域包含与未来摩擦行为相对应的隐藏信息。我们发现,AE信号确实包含了非常近期的预测信息,但是在未来的范围内,预测逐渐更糟。值得注意的是,发现用于预测未来摩擦故障和恢复的信息已包含在AE信号中。通过机器学习来预测未来的故障摩擦行为的第一个努力将指导地球应用程序的努力。

Machine learning models using seismic emissions can predict instantaneous fault characteristics such as displacement in laboratory experiments and slow slip in Earth. Here, we address whether the acoustic emission (AE) from laboratory experiments contains information about near-future frictional behavior. The approach uses a convolutional encoder-decoder containing a transformer layer. We use as input progressively larger AE input time windows and progressively larger output friction time windows. The attention map from the transformer is used to interpret which regions of the AE contain hidden information corresponding to future frictional behavior. We find that very near-term predictive information is indeed contained in the AE signal, but farther into the future the predictions are progressively worse. Notably, information for predicting near future frictional failure and recovery are found to be contained in the AE signal. This first effort predicting future fault frictional behavior with machine learning will guide efforts for applications in Earth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源