论文标题

进化和自然的应用激发了数据科学和数据分析中的算法

The application of Evolutionary and Nature Inspired Algorithms in Data Science and Data Analytics

论文作者

Mohammadi, Farid Ghareh, Shenavarmasouleh, Farzan, Rasheed, Khaled, Taha, Thiab, Amini, M. Hadi, Arabnia, Hamid R.

论文摘要

在过去的30年中,科学家搜索了自然,包括动物和昆虫,以及生物学,以发现,理解和模型解决大型科学挑战的解决方案。对生物学的研究表明,在自然界中发现的生物结构,自然界中发现的功能如何改善我们的现代技术。在这项研究中,我们介绍了数据科学和数据分析中进化和自然风格的算法应用的发现,这是三个主要的预处理,监督算法和无监督算法的主要主题。在所有应用中,在这项研究中,我们旨在研究使用数据科学和分析中的进化和自然风格算法进行的四种优化算法。在预处理部分,超参数调整优化以及监督算法中的知识发现优化以及在无监督算法中的聚类优化中的特征选择优化。

In the past 30 years, scientists have searched nature, including animals and insects, and biology in order to discover, understand, and model solutions for solving large-scale science challenges. The study of bionics reveals that how the biological structures, functions found in nature have improved our modern technologies. In this study, we present our discovery of evolutionary and nature-inspired algorithms applications in Data Science and Data Analytics in three main topics of pre-processing, supervised algorithms, and unsupervised algorithms. Among all applications, in this study, we aim to investigate four optimization algorithms that have been performed using the evolutionary and nature-inspired algorithms within data science and analytics. Feature selection optimization in pre-processing section, Hyper-parameter tuning optimization, and knowledge discovery optimization in supervised algorithms, and clustering optimization in the unsupervised algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源