论文标题

实时无人机监督的统一多任务学习框架,用于人群计数

A Unified Multi-Task Learning Framework of Real-Time Drone Supervision for Crowd Counting

论文作者

Gu, Siqi, Lian, Zhichao

论文摘要

在本文中,提出了一个新颖的统一的统一的多任务学习框架,用于实时无人机监督人群计数(MFCC),该框架利用图像融合网络体系结构将图像从可见的和热红外映像中融合在一起,并且人群计数网络体系结构以估算密度映射。我们框架的目的是融合两种方式,包括无人机实时捕获的可见和热红外图像,这些图像实时捕获,以利用互补信息来准确计算密集的人口,然后自动指导无人机的飞行以监督密集的人群。为此,我们提出了首次进行人群计数的统一多任务学习框架,并重新设计统一的训练损失功能,以使图像融合网络和人群计数网络对齐。我们还设计了辅助学习模块(ALM),以将密度图功能融合到图像融合编码器过程中,以学习计数特征。为了提高准确性,我们提出了基于密集的连接体系结构的广泛上下文提取模块(ECEM),以编码多触觉场上的上下文信息,并应用多域注意块(MAB),以涉及无人机视图中的头部区域。最后,我们应用预测图来自动指导无人机监督着密集的人群。 Dronergbt数据集的实验结果表明,与现有方法相比,我们的方法在客观评估和更轻松的培训过程中具有可比的结果。

In this paper, a novel Unified Multi-Task Learning Framework of Real-Time Drone Supervision for Crowd Counting (MFCC) is proposed, which utilizes an image fusion network architecture to fuse images from the visible and thermal infrared image, and a crowd counting network architecture to estimate the density map. The purpose of our framework is to fuse two modalities, including visible and thermal infrared images captured by drones in real-time, that exploit the complementary information to accurately count the dense population and then automatically guide the flight of the drone to supervise the dense crowd. To this end, we propose the unified multi-task learning framework for crowd counting for the first time and re-design the unified training loss functions to align the image fusion network and crowd counting network. We also design the Assisted Learning Module (ALM) to fuse the density map feature to the image fusion encoder process for learning the counting features. To improve the accuracy, we propose the Extensive Context Extraction Module (ECEM) that is based on a dense connection architecture to encode multi-receptive-fields contextual information and apply the Multi-domain Attention Block (MAB) for concerning the head region in the drone view. Finally, we apply the prediction map to automatically guide the drones to supervise the dense crowd. The experimental results on the DroneRGBT dataset show that, compared with the existing methods, ours has comparable results on objective evaluations and an easier training process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源