论文标题

部分可观测时空混沌系统的无模型预测

Odd-distance and right-equidistant sets in the maximum and Manhattan metrics

论文作者

Golovanov, Alexander, Kupavskii, Andrey, Sagdeev, Arsenii

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We solve two related extremal-geometric questions in the $n-$dimensional space $\mathbb{R}^n_{\infty}$ equipped with the maximum metric. First, we prove that the maximum size of a right-equidistant sequence of points in $\mathbb{R}^n_{\infty}$ equals $2^{n+1}-1$. A sequence is right-equidistant if each of the points is at the same distance from all the succeeding points. Second, we prove that the maximum number of points in $\mathbb{R}^n_{\infty}$ with pairwise odd distances equals $2^n$. We also obtain partial results for both questions in the $n-$dimensional space $\mathbb{R}^n_1$ with the Manhattan distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源