论文标题
图形域的适应性
Graph-Relational Domain Adaptation
论文作者
论文摘要
现有的域适应方法倾向于平等对待每个领域并完美对齐它们。这种统一的一致性忽略了不同领域之间的拓扑结构。因此,它可能对附近的领域有益,但不一定对遥远的域。在这项工作中,我们通过使用域图来宽松这种统一的对齐方式来编码域邻接,例如,美国的状态图,每个状态作为域,每个边缘表示邻接,从而允许基于图形结构灵活地对齐。我们使用编码条件的图嵌入使用新的图形鉴别器来概括现有的对抗学习框架。理论分析表明,在平衡时,我们的方法在图是一个集团时恢复了经典域的适应性,并且可以实现其他类型的图形的非平凡比对。经验结果表明,我们的方法成功地概括了统一的对准,自然结合了图表所示的域信息,并改进了合成和现实世界数据集上现有的域适应方法。代码很快将在https://github.com/wang-ml-lab/grda上找到。
Existing domain adaptation methods tend to treat every domain equally and align them all perfectly. Such uniform alignment ignores topological structures among different domains; therefore it may be beneficial for nearby domains, but not necessarily for distant domains. In this work, we relax such uniform alignment by using a domain graph to encode domain adjacency, e.g., a graph of states in the US with each state as a domain and each edge indicating adjacency, thereby allowing domains to align flexibly based on the graph structure. We generalize the existing adversarial learning framework with a novel graph discriminator using encoding-conditioned graph embeddings. Theoretical analysis shows that at equilibrium, our method recovers classic domain adaptation when the graph is a clique, and achieves non-trivial alignment for other types of graphs. Empirical results show that our approach successfully generalizes uniform alignment, naturally incorporates domain information represented by graphs, and improves upon existing domain adaptation methods on both synthetic and real-world datasets. Code will soon be available at https://github.com/Wang-ML-Lab/GRDA.