论文标题
更有效地攻击C-MARL:数据驱动方法
Attacking c-MARL More Effectively: A Data Driven Approach
论文作者
论文摘要
近年来,用于合作多代理增强学习(C-MARL)的方法扩散。但是,很少探索C-MARL特工对对抗攻击的鲁棒性。在本文中,我们建议通过名为C-MBA的基于模型的方法来评估C-MARL代理的鲁棒性。我们提出的配方可以制造出比现有的无模型方法更强大的C-MARL代理的对抗状态扰动,以降低团队的奖励。此外,我们提出了第一个受害者代理选择策略,并提出了第一种数据驱动的方法来定义有针对性的故障状态,在这种情况下,每个人都可以在没有对基础环境的专家知识的情况下发展更强大的对抗性攻击。我们对两个代表性MARL基准测试的数值实验说明了我们方法比其他基准的优势:我们的基于模型的攻击在所有测试环境中始终优于其他基准。
In recent years, a proliferation of methods were developed for cooperative multi-agent reinforcement learning (c-MARL). However, the robustness of c-MARL agents against adversarial attacks has been rarely explored. In this paper, we propose to evaluate the robustness of c-MARL agents via a model-based approach, named c-MBA. Our proposed formulation can craft much stronger adversarial state perturbations of c-MARL agents to lower total team rewards than existing model-free approaches. In addition, we propose the first victim-agent selection strategy and the first data-driven approach to define targeted failure states where each of them allows us to develop even stronger adversarial attack without the expert knowledge to the underlying environment. Our numerical experiments on two representative MARL benchmarks illustrate the advantage of our approach over other baselines: our model-based attack consistently outperforms other baselines in all tested environments.