论文标题
最小距离的二元代码大小的新界限
New Bounds on the Size of Binary Codes with Large Minimum Distance
论文作者
论文摘要
令$ a(n,d)$表示长度$ n $和最小锤距$ d $的二进制代码的最大大小。研究$ a(n,d)$,包括确定它的努力,以及以$ a(n,d)$为$ n $ s的界限,是编码理论中最基本的主题之一。在本文中,我们在$ a(n,d)$上探索新的下层和上限,尤其是当$ d = n/2 -ω(\ sqrt {n})$时。我们首先通过仔细选择二进制扩展字段的特定根来提供新的循环代码的新结构,以进行多项式,长度$ n = 2^m -1 $,距离$ d \ geq n/2 n/2-2-2-2^{c -1} \ sqrt {n} $ n} \ LEQ C \ LEQ M/2-1 $。这些代码参数比Delsarte的代码参数稍差,即Delsarte的代码(DG)代码,该代码提供了以前已知的最佳距离距离制度中的最佳下限。但是,使用类似和扩展的代码构建技术,我们显示了一系列循环代码,这些序列可以改进DG代码,并在最小距离$ d $的较窄范围内提供最佳下限,尤其是当$ d = n/2 -ω(n^{2/3})$时。此外,通过利用Delsarte线性程序的傅立叶分析视图,在$ a(n,n/2 -ρ\ sqrt {n})$上使用$ρ\ in(0.5,9.5)$上的上限在$ n $中获得了该规模。据《最好的作者所知》,由于barg和nogin \ cite {barg2006spectral}而引起的上限是唯一一个以前已知的上限,该制度中的$ n $ scale是多项式的。我们从数值上证明,我们的上限在指定的高最小距离状态下的Barg-Nogin上限上有所改善。
Let $A(n, d)$ denote the maximum size of a binary code of length $n$ and minimum Hamming distance $d$. Studying $A(n, d)$, including efforts to determine it as well to derive bounds on $A(n, d)$ for large $n$'s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on $A(n, d)$ in the large-minimum distance regime, in particular, when $d = n/2 - Ω(\sqrt{n})$. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length $n= 2^m -1$, distance $d \geq n/2 - 2^{c-1}\sqrt{n}$, and size $n^{c+1/2}$, for any $m\geq 4$ and any integer $c$ with $0 \leq c \leq m/2 - 1$. These code parameters are slightly worse than those of the Delsarte--Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance $d$, in particular, when $d = n/2 - Ω(n^{2/3})$. Furthermore, by leveraging a Fourier-analytic view of Delsarte's linear program, upper bounds on $A(n, n/2 - ρ\sqrt{n})$ with $ρ\in (0.5, 9.5)$ are obtained that scale polynomially in $n$. To the best of authors' knowledge, the upper bound due to Barg and Nogin \cite{barg2006spectral} is the only previously known upper bound that scale polynomially in $n$ in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.