论文标题

群集随机测试阴性设计的随机推断,并适用于登革热研究

Randomization Inference for Cluster-Randomized Test-Negative Designs with Application to Dengue Studies: Unbiased estimation, Partial compliance, and Stepped-wedge design

论文作者

Wang, Bingkai, Dufault, Suzanne M., Small, Dylan S., Jewell, Nicholas P.

论文摘要

2019年,世界卫生组织确定登革热是全球十大健康威胁之一。为了控制登革热,应用沃尔巴基亚消除登革热(AWED)研究小组在印度尼西亚州长宫进行了集群随机试验,并使用了一种新颖的设计,称为群集随机测试阴性设计(CR-TND)。该设计可以通过被动监视系统收集的数据产生有效的统计推断,因此与传统的集群随机试验相比,成本效率具有优势。我们研究了在随机推理框架下CR-TND的统计假设和特性,这对于小样本问题是可靠且有效的。我们发现,当比较干预和控制的差异性医疗保健行为在各个集群之间各不相同(与Dufault and Jewell的设置相反,在2020年的设置中,在整个集群中,寻求医疗保健的行为是持续不断的),CR-TND的当前分析方法可能会偏置并易于I型I型误差。我们提出了对数对比估计器,该估计器可以通过调整协变量来消除这种偏见并提高精度。此外,我们扩展了处理部分干预依从性和阶梯式设计设计的方法,这两者经常出现在集群随机试验中。最后,我们通过模拟研究和重新分析敬畏研究来证明我们的结果。

In 2019, the World Health Organization identified dengue as one of the top ten global health threats. For the control of dengue, the Applying Wolbachia to Eliminate Dengue (AWED) study group conducted a cluster-randomized trial in Yogyakarta, Indonesia, and used a novel design, called the cluster-randomized test-negative design (CR-TND). This design can yield valid statistical inference with data collected by a passive surveillance system and thus has the advantage of cost-efficiency compared to traditional cluster-randomized trials. We investigate the statistical assumptions and properties of CR-TND under a randomization inference framework, which is known to be robust and efficient for small-sample problems. We find that, when the differential healthcare-seeking behavior comparing intervention and control varies across clusters (in contrast to the setting of Dufault and Jewell, 2020 where the differential healthcare-seeking behavior is constant across clusters), current analysis methods for CR-TND can be biased and have inflated type I error. We propose the log-contrast estimator that can eliminate such bias and improve precision by adjusting for covariates. Furthermore, we extend our methods to handle partial intervention compliance and a stepped-wedge design, both of which appear frequently in cluster-randomized trials. Finally, we demonstrate our results by simulation studies and re-analysis of the AWED study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源