论文标题
为暹罗代表学习制定更好的对比度观点
Crafting Better Contrastive Views for Siamese Representation Learning
论文作者
论文摘要
最近的自我保护的对比学习方法极大地受益于暹罗结构,旨在最大程度地减少积极对之间的距离。对于高性能的暹罗代表学习,其中之一是设计良好的对比对。大多数以前的作品只需进行随机抽样即可制作相同图像的不同农作物,从而忽略了可能降低视图质量的语义信息。在这项工作中,我们提出了对比,这可以有效地为暹罗代表学习产生更好的作物。首先,在培训过程中提出了语义意识的对象本地化策略,以完全无监督的方式。这引导我们产生对比度,以避免大多数假阳性(即对象与背景)。此外,我们从经验上发现,对于暹罗模型培训,具有相似外观的观点是微不足道的。因此,进一步设计了中心抑制的采样以扩大农作物的方差。值得注意的是,我们的方法仔细考虑了对比度学习的积极对,并可以忽略不计的额外训练。作为一个插件和框架 - 不合Snostic模块,ContastiveCrop始终将Simclr,Moco,Byol,Simsiam提高0.4%〜2.0%〜2.0%的分类精度,CIFAR-10,CIFAR-100,TINY IMAGENET和STL-10。在ImagEnet-1K进行预训练时,在下游检测和分割任务上也可以实现出色的结果。
Recent self-supervised contrastive learning methods greatly benefit from the Siamese structure that aims at minimizing distances between positive pairs. For high performance Siamese representation learning, one of the keys is to design good contrastive pairs. Most previous works simply apply random sampling to make different crops of the same image, which overlooks the semantic information that may degrade the quality of views. In this work, we propose ContrastiveCrop, which could effectively generate better crops for Siamese representation learning. Firstly, a semantic-aware object localization strategy is proposed within the training process in a fully unsupervised manner. This guides us to generate contrastive views which could avoid most false positives (i.e., object vs. background). Moreover, we empirically find that views with similar appearances are trivial for the Siamese model training. Thus, a center-suppressed sampling is further designed to enlarge the variance of crops. Remarkably, our method takes a careful consideration of positive pairs for contrastive learning with negligible extra training overhead. As a plug-and-play and framework-agnostic module, ContrastiveCrop consistently improves SimCLR, MoCo, BYOL, SimSiam by 0.4% ~ 2.0% classification accuracy on CIFAR-10, CIFAR-100, Tiny ImageNet and STL-10. Superior results are also achieved on downstream detection and segmentation tasks when pre-trained on ImageNet-1K.