论文标题

通过批判使用基于Carleman估计的逆理论,在BESOV空间中,Boussinesq系统的有限尺寸边界均匀稳定

Finite dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory

论文作者

Lasiecka, Irena, Priyasad, Buddhika, Triggiani, Roberto

论文摘要

我们考虑在足够光滑的有界域上定义的D维boussinesq系统,并受到控制的$ \ {v,\ boldsymbol {u} \} $的$ \ {\widetiLdeγ,ω\ \} $。在这里,$ v $是用于热方程的标量dirichlet边界控制,作用于边界$γ= \ partialω$的任意小连接部分$ \widetildeγ$。取而代之的是,$ \ boldsymbol {u} $是$ \ \ \wideTildeDγ$支持的液体方程的$ d $二维内部控制(图1)。流体和热方程式的初始条件都具有低规律性。然后,我们试图通过一个明确构造的,有限的尺寸反馈控制对$ \ \ \ {v,\ boldsymbol {u} $ \ \ widetectect,在相应低的规律性空间的关键环境中,通过一个明确构造的,有限的维度反馈控制对$ \ \ \ {v,\ boldsymbol {uboldsymbol {u} $ phintectect,在不稳定平衡对的附近均匀地稳定了这种BoussinesQ系统。此外,它们的数量最少,并且尺寸缩小:更确切地说,$ \ boldsymbol {u} $将是dimension $(d-1)$,必须包括其$ d $ d $ \ textsuperscript {th th} component,$ v $将为dimension $ 1 $。稳定度和稳定的结果空间是适合流体速度组件的合适的,紧密的空间(接近$ \ boldsymbol {l}^3(ω$),$ d = 3 $),对于热成分$ q> d $的相应besov besov空间。适当地确定的伴随静态问题的独特持续逆定理在建设性解决方案中起着关键作用。他们的证据取决于卡尔曼类型的估计,这是M. V. Klibanov自80年代初期(1939年突破出版物\ Cite {Car}之后)开创的主题。

We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair $\{ v, \boldsymbol{u} \}$ of controls localized on $\{ \widetildeΓ, ω\}$. Here, $v$ is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion $\widetildeΓ$ of the boundary $Γ= \partial Ω$. Instead, $\boldsymbol{u}$ is a $d$-dimensional internal control for the fluid equation acting on an arbitrary small collar $ω$ supported by $\widetildeΓ$ (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair $\{ v, \boldsymbol{u} \}$ localized on $\{ \widetildeΓ, ω\}$. In addition, they will be minimal in number, and of reduced dimension: more precisely, $\boldsymbol{u}$ will be of dimension $(d-1)$, to include necessarily its $d$\textsuperscript{th} component, and $v$ will be of dimension $1$. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to $\boldsymbol{L}^3(Ω$) for $ d = 3 $) and a corresponding Besov space for the thermal component, $ q > d $. Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源