论文标题
柑橘:时间间序序列的因果可识别性
CITRIS: Causal Identifiability from Temporal Intervened Sequences
论文作者
论文摘要
从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已经被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以识别标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘以通过已经验证的自动编码器获得的杠杆和拆卸表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在3D渲染图像序列的实验中,柑橘的表现优于恢复基本因果变量的先前方法。此外,使用预处理的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中为因果代表学习开放未来的研究领域。
Understanding the latent causal factors of a dynamical system from visual observations is considered a crucial step towards agents reasoning in complex environments. In this paper, we propose CITRIS, a variational autoencoder framework that learns causal representations from temporal sequences of images in which underlying causal factors have possibly been intervened upon. In contrast to the recent literature, CITRIS exploits temporality and observing intervention targets to identify scalar and multidimensional causal factors, such as 3D rotation angles. Furthermore, by introducing a normalizing flow, CITRIS can be easily extended to leverage and disentangle representations obtained by already pretrained autoencoders. Extending previous results on scalar causal factors, we prove identifiability in a more general setting, in which only some components of a causal factor are affected by interventions. In experiments on 3D rendered image sequences, CITRIS outperforms previous methods on recovering the underlying causal variables. Moreover, using pretrained autoencoders, CITRIS can even generalize to unseen instantiations of causal factors, opening future research areas in sim-to-real generalization for causal representation learning.