论文标题
通过部分观察到无线上行链路网络中的信息年龄
Optimizing Age of Information in Wireless Uplink Networks with Partial Observations
论文作者
论文摘要
我们考虑了一个由多个终端设备和访问点(AP)组成的无线上行链路网络。每个设备都会监视具有随机性到达状态更新的物理过程,并通过共享通道将这些更新发送给AP。 AP的目的是安排这些设备的传输,以优化通过信息时代(AOI)度量量化的网络范围信息新鲜度。由于状态更新在设备上的随机到达,因此,AP仅部分观察到计划决策时设备上最新状态更新的系统时间。我们提出了这样一个决策问题,例如信念马尔可夫决策过程(信仰MDP)。由于其状态的维度可以转到无限,并且其信仰空间是无法数的,因此很难以其原始形式的信念MDP解决。通过利用状态更新到达的属性(即Bernoulli)流程,我们设法将信仰MDP的可行状态简化为二维向量。以此为基础,我们设计了一个低复杂的调度策略。我们为低复杂性策略的AOI性能提供了上限,并通过将其性能与通用下限进行比较来分析性能保证。数值结果验证了我们的分析。
We consider a wireless uplink network consisting of multiple end devices and an access point (AP). Each device monitors a physical process with stochastic arrival of status updates and sends these updates to the AP over a shared channel. The AP aims to schedule the transmissions of these devices to optimize the network-wide information freshness, quantified by the Age of Information (AoI) metric. Due to the stochastic arrival of the status updates at the devices, the AP only has partial observations of system times of the latest status updates at the devices when making scheduling decisions. We formulate such a decision-making problem as a belief Markov Decision Process (belief-MDP). The belief-MDP in its original form is difficult to solve as the dimension of its states can go to infinity and its belief space is uncountable. By leveraging the properties of the status update arrival (i.e., Bernoulli) processes, we manage to simplify the feasible states of the belief-MDP to two-dimensional vectors. Built on that, we devise a low-complexity scheduling policy. We derive upper bounds for the AoI performance of the low-complexity policy and analyze the performance guarantee by comparing its performance with a universal lower bound. Numerical results validate our analyses.