论文标题

FL_PYTORCH:联合学习的优化研究模拟器

FL_PyTorch: optimization research simulator for federated learning

论文作者

Burlachenko, Konstantin, Horváth, Samuel, Richtárik, Peter

论文摘要

联合学习(FL)已成为边缘设备的一种有前途的技术,可以协作学习共享的机器学习模型,同时将培训数据保留在设备上,从而消除了在云中存储和访问完整数据的需求。但是,考虑到公共边缘设备设置中的异质性,FL很难实施,测试和部署,从而使研究人员从根本上难以有效原型和测试其优化算法。在这项工作中,我们的目的是通过引入FL_PYTORCH:用Python编写的一套开源软件来减轻此问题,该软件是最受欢迎的研究深度学习(DL)框架Pytorch的基础。我们构建了FL_PYTORCH作为FL的研究模拟器,以实现快速开发,原型制作和实验新的和现有的FL优化算法。我们的系统支持摘要,为研究人员提供足够的灵活性,以尝试实验现有和新颖的方法以推进最先进的方法。此外,FL_PYTORCH是一个易于使用的控制台系统,允许使用本地CPU或GPU同时运行多个客户端,甚至可以远程计算设备,而无需使用用户提供的任何分布式实现。 FL_PYTORCH还提供图形用户界面。对于新方法,研究人员仅提供其算法的集中实施。为了展示系统的可能性和实用性,我们尝试了几种众所周知的最先进的FL算法和一些最常见的FL数据集。

Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared machine learning model while keeping training data locally on the device, thereby removing the need to store and access the full data in the cloud. However, FL is difficult to implement, test and deploy in practice considering heterogeneity in common edge device settings, making it fundamentally hard for researchers to efficiently prototype and test their optimization algorithms. In this work, our aim is to alleviate this problem by introducing FL_PyTorch : a suite of open-source software written in python that builds on top of one the most popular research Deep Learning (DL) framework PyTorch. We built FL_PyTorch as a research simulator for FL to enable fast development, prototyping and experimenting with new and existing FL optimization algorithms. Our system supports abstractions that provide researchers with a sufficient level of flexibility to experiment with existing and novel approaches to advance the state-of-the-art. Furthermore, FL_PyTorch is a simple to use console system, allows to run several clients simultaneously using local CPUs or GPU(s), and even remote compute devices without the need for any distributed implementation provided by the user. FL_PyTorch also offers a Graphical User Interface. For new methods, researchers only provide the centralized implementation of their algorithm. To showcase the possibilities and usefulness of our system, we experiment with several well-known state-of-the-art FL algorithms and a few of the most common FL datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源