论文标题
多目标质量多样性优化
Multi-Objective Quality Diversity Optimization
论文作者
论文摘要
在这项工作中,我们考虑了具有多个目标的质量多样性(QD)优化的问题。已经提出了QD算法来搜索大量各种和高性能的解决方案,而不是一组本地Optima。蓬勃发展的多样性被证明在许多工业和机器人应用中很有用。另一方面,大多数现实生活中的问题都表现出要优化的几种潜在对立目标。因此,在多元化蓬勃发展的同时,能够用适当的技术优化多个目标对许多领域很重要。在这里,我们在多目标设置中提出了MAP-ELITE算法的扩展:多目标MAP-ELITE(MOME)。也就是说,它结合了从MAP-ELITE网格算法继承的多样性与多目标优化的强度,通过用帕累托前部填充每个细胞。因此,它允许在描述符空间中提取各种解决方案,同时探索目标之间的不同妥协。从标准优化问题到机器人模拟,我们评估了几个任务的方法。我们的实验评估表明,摩尔提供不同解决方案的能力,同时提供类似于标准多目标算法的全球性能。
In this work, we consider the problem of Quality-Diversity (QD) optimization with multiple objectives. QD algorithms have been proposed to search for a large collection of both diverse and high-performing solutions instead of a single set of local optima. Thriving for diversity was shown to be useful in many industrial and robotics applications. On the other hand, most real-life problems exhibit several potentially antagonist objectives to be optimized. Hence being able to optimize for multiple objectives with an appropriate technique while thriving for diversity is important to many fields. Here, we propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME). Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations by filling each cell with a Pareto Front. As such, it allows to extract diverse solutions in the descriptor space while exploring different compromises between objectives. We evaluate our method on several tasks, from standard optimization problems to robotics simulations. Our experimental evaluation shows the ability of MOME to provide diverse solutions while providing global performances similar to standard multi-objective algorithms.