论文标题

低维度中的高斯全息超导体

Gauss-Bonnet holographic superconductors in lower-dimensions

论文作者

Mohammadi, Mahya, Sheykhi, Ahmad

论文摘要

我们揭示了高斯 - 摩托克重力对全息$ s $ - 波和$ p $ - 波级超导体具有较高级校正的影响。我们采用射击方法来求解运动方程,并获得不同质量,非线性量规场和高斯 - 骨网参数对临界温度和凝结的影响。根据我们的结果,增加这三个参数中的每一个都会导致温度较低和凝结值。这种现象源于以下事实:在存在大规模场的情况下,导体/超导相变的面孔很难难以更高的非线性和高斯式术语效应。此外,我们研究全息图设置中的电导率。在$ d = 4 $中,全息$ s $ - 和$ p $ - 波型模型的真实和想象中的电导率相似,并遵循与较高维度相同的趋势,通过在低频方向上显示delta功能和极点,Kramers-Kronig - Kramers-kronig关系可以将这两个电导率连接到彼此之间。我们观察到$ω__{g} \约8T_ {C} $的间隙能的外观,通过降低温度并增加非线性和高斯 - 孔网项的效果,该{c} $在$ 8T_ {C} $上移动。 $ d = 3 $中的电导率与其他维度有很大不同。即使是$ s $ - 和$ p $ - 波模式的真实和虚构零件也采用了各种趋势。例如,在$ω\ rightarrow 0 $限制中,全息$ s $ - 波模型中的虚构部分倾向于无穷大,但以$ p $ - 波 - 波 - 波 - 波模型的方法为零。但是,两个模型中的实际部分都显示出三角洲功能行为。通常,在我们研究的所有情况下,真实的和虚构的电导率部分都倾向于在$ω\ rightarrow \ infty $制度中具有恒定值。

We disclose the effect of Gauss-Bonnet gravity on the properties of holographic $s$-wave and $p$-wave superconductors with higher order corrections in lower-dimensional spacetime. We employ shooting method to solve equations of motion numerically and obtain the effect of different values of mass, nonlinear gauge field and Gauss-Bonnet parameters on critical temperature and condensation. Based on our results, increasing each of these three parameters leads to lower temperatures and larger values of condensation. This phenomenon is rooted in the fact that conductor/superconductor phase transition faces with difficulty for higher effect of nonlinear and Gauss-Bonnet terms in the presence of a massive field. In addition, we study the electrical conductivity in holographic setup. In $D=4$, real and imaginary parts of conductivity in holographic $s$- and $p$-wave models behave similarly and follow the same trend as higher dimensions by showing the delta function and pole at low frequency regime that Kramers-Kronig relation can connect these two parts of conductivity to each other. We observe the appearance of a gap energy at $ω_{g}\approx 8T_{c}$ at which shifts toward higher frequencies by diminishing temperature and increasing the effect of nonlinear and Gauss-Bonnet terms. Conductivity in $D = 3$ is far different from other dimensions. Even the real and imaginary parts in $s$- and $p$-wave modes pursue various trends. For example in $ω\rightarrow 0$ limit, imaginary part in holographic $s$-wave model tends to infinity but in $p$-wave model approaches to zero. However, the real parts in both models show a delta function behavior. In general, real and imaginary parts of conductivity in all cases that we study tend to a constant value in $ω\rightarrow \infty$ regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源