论文标题

由图形确定的2步nilpotent组的雷德谱

The Reidemeister spectrum of 2-step nilpotent groups determined by graphs

论文作者

Dekimpe, Karel, Lathouwers, Maarten

论文摘要

在本文中,我们研究了与图形相关的2步nilpotent组的reidemister频谱。我们根据图的结构开发了三种方法,可用于根据与较小图相关的组的reidemeister光谱来确定相关组的reidemister光谱。我们为几个图的家族说明了我们的方法,包括与图形相关的所有组最多四个顶点的组。我们还将结果应用于Nilmanifolds的拓扑固定点理论。

In this paper we study the Reidemeister spectrum of 2-step nilpotent groups associated to graphs. We develop three methods, based on the structure of the graph, that can be used to determine the Reidemeister spectrum of the associated group in terms of the Reidemeister spectra of groups associated to smaller graphs. We illustrate our methods for several families of graphs, including all the groups associated to a graph with at most four vertices. We also apply our results in the context of topological fixed point theory for nilmanifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源