论文标题
持续的同源性,用于有效的非划理操作
Persistent Homology for Effective Non-Prehensile Manipulation
论文作者
论文摘要
这项工作探讨了拓扑工具在混乱,受约束的工作空间中实现有效的非划理操作的使用。特别是,它建议将持久同源性用作指导原则,以识别适当的非审查动作(例如推动),以用机器人的手臂清洁混乱的空间,以允许检索目标对象。持续的同源性可以自动识别空间中阻止对象的连接组件,而无需手动输入或调整参数。所提出的算法使用此信息将圆柱体对象组推在一起,并旨在最大程度地减少到达目标所需的推动动作数量。使用百特机器人模型在物理发动机中进行的模拟实验表明,所提出的拓扑驱动的解决方案在与文献中与最先进的替代方案相对解决此类限制问题方面取得了显着更高的成功率。它设法将推动动作的数量保持在计算上是有效的,而由此产生的决策和运动似乎很自然,可以有效地解决此类任务。
This work explores the use of topological tools for achieving effective non-prehensile manipulation in cluttered, constrained workspaces. In particular, it proposes the use of persistent homology as a guiding principle in identifying the appropriate non-prehensile actions, such as pushing, to clean a cluttered space with a robotic arm so as to allow the retrieval of a target object. Persistent homology enables the automatic identification of connected components of blocking objects in the space without the need for manual input or tuning of parameters. The proposed algorithm uses this information to push groups of cylindrical objects together and aims to minimize the number of pushing actions needed to reach to the target. Simulated experiments in a physics engine using a model of the Baxter robot show that the proposed topology-driven solution is achieving significantly higher success rate in solving such constrained problems relatively to state-of-the-art alternatives from the literature. It manages to keep the number of pushing actions low, is computationally efficient and the resulting decisions and motion appear natural for effectively solving such tasks.