论文标题
Grothendieck多项式的猜想的Möbius倒置公式的证明
Proof of a conjectured Möbius inversion formula for Grothendieck polynomials
论文作者
论文摘要
Schubert polynomials $\mathfrak{S}_w$ are polynomial representatives for cohomology classes of Schubert varieties in a complete flag variety, while Grothendieck polynomials $\mathfrak{G}_w$ are analogous representatives for the $K$-theory classes of the structure sheaves of Schubert varieties.在特殊情况下,$ \ mathfrak {s} _w $是无数次的单元总和。我们证明了这个猜想。
Schubert polynomials $\mathfrak{S}_w$ are polynomial representatives for cohomology classes of Schubert varieties in a complete flag variety, while Grothendieck polynomials $\mathfrak{G}_w$ are analogous representatives for the $K$-theory classes of the structure sheaves of Schubert varieties. In the special case that $\mathfrak{S}_w$ is a multiplicity-free sum of monomials, K. Mészáros, L. Setiabrata, and A. St. Dizier conjectured that $\mathfrak{G}_w$ can be easily computed from $\mathfrak{S}_w$ via Möbius inversion on a certain poset. We prove this conjecture.