论文标题

Grothendieck多项式的猜想的Möbius倒置公式的证明

Proof of a conjectured Möbius inversion formula for Grothendieck polynomials

论文作者

Pechenik, Oliver, Satriano, Matthew

论文摘要

Schubert polynomials $\mathfrak{S}_w$ are polynomial representatives for cohomology classes of Schubert varieties in a complete flag variety, while Grothendieck polynomials $\mathfrak{G}_w$ are analogous representatives for the $K$-theory classes of the structure sheaves of Schubert varieties.在特殊情况下,$ \ mathfrak {s} _w $是无数次的单元总和。我们证明了这个猜想。

Schubert polynomials $\mathfrak{S}_w$ are polynomial representatives for cohomology classes of Schubert varieties in a complete flag variety, while Grothendieck polynomials $\mathfrak{G}_w$ are analogous representatives for the $K$-theory classes of the structure sheaves of Schubert varieties. In the special case that $\mathfrak{S}_w$ is a multiplicity-free sum of monomials, K. Mészáros, L. Setiabrata, and A. St. Dizier conjectured that $\mathfrak{G}_w$ can be easily computed from $\mathfrak{S}_w$ via Möbius inversion on a certain poset. We prove this conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源