论文标题
关于非线性和线性流变学的同时拟合数据:防止错误的确定性
On simultaneous fitting of nonlinear and linear rheology data: Preventing a false sense of certainty
论文作者
论文摘要
不确定性通过计算传播到分子量表以推断微结构特征,并具有预测流模拟的宏观尺度。在这里,我们研究了使用线性和弱非线性流变学数据的顺序(两步)与同时拟合方法的不确定性定量。使用在小振幅振荡剪切(SAOS)和中等振幅振荡剪切(MAOS)上的组合数据集的示例,用于线性纠缠聚合物熔体(CIS-1,4-多酶异烯),我们用多模式的模式模型在拟合拟合中拟合了该模型的拟合方式,因为该模型对拟合的方式进行了拟合,因为该模型对拟合的拟合方式进行了拟合。这些结果令人惊讶,因为虚弱的非线性数据只是远离线性数据的一步,但它对校准线性模型参数具有重大影响。同样,通过同时拟合中的线性数据,非线性参数估计值和不确定性也会影响。为了比较非线性参数的多模式光谱(来自Giesekus模型的迁移率参数{α_i}),我们根据与高频MAOS限制相关的光谱的矩来得出新的平均度量。光谱平均值也对顺序和同时拟合敏感。我们的结果表明,即使使用弱非线性数据,同时使用同时拟合进行诚实的不确定性定量的重要性。
Uncertainty propagates through calculations, down to molecular scales to infer microstructural features, and up to macroscopic scales with predictive flow simulations. Here we study uncertainty quantification for sequential (two-step) versus simultaneous (all at once) fitting methods with linear and weakly-nonlinear rheological data. Using an example of a combined dataset on small-amplitude oscillatory shear (SAOS) and medium-amplitude oscillatory shear (MAOS) for a linear entangled polymer melt (cis-1,4-polyisoprene), we demonstrate with a multi-mode Giesekus model how the fit parameter uncertainties are significantly under-estimated with the sequential fit because of the neglect of model parameter correlations. These results are surprising because weakly-nonlinear data is only an asymptotic step away from the linear data, yet it has significant impact on calibrating the linear model parameters. Similarly, the nonlinear parameter estimates and uncertainties are impacted by considering the linear data in a simultaneous fit. To compare multi-mode spectra of nonlinear parameters (mobility parameters {α_i} from the Giesekus model), we derive new average measures based on moments of the spectra related to the high-frequency MAOS limit. The spectral averages are also sensitive to sequential versus simultaneous fitting. Our results reveal the importance of using simultaneous fitting for honest uncertainty quantification, even with weakly-nonlinear data.