论文标题
SFMGNET:基于物理的神经网络,可预测行人轨迹
SFMGNet: A Physics-based Neural Network To Predict Pedestrian Trajectories
论文作者
论文摘要
预计自动机器人和车辆将很快成为我们环境不可或缺的一部分。与现有道路使用者相互作用,混合交通区域的绩效以及缺乏可解释的行为的不令人满意的问题仍然是关键障碍。为了解决这些问题,我们提出了一个基于物理的神经网络,该神经网络基于一种混合方法,该方法结合了团体力量(SFMG)与多层感知器(MLP)扩展的社会力量模型,以预测其与静态障碍,其他行人,其他行人和行人组相互作用的行人轨迹。我们对现实预测,预测性能和预测“可解释性”进行定量和定性评估模型。最初的结果表明,即使仅在合成数据集上训练的模型,该模型也可以预测现实且可解释的轨迹,其轨迹比最先进的精度更好。
Autonomous robots and vehicles are expected to soon become an integral part of our environment. Unsatisfactory issues regarding interaction with existing road users, performance in mixed-traffic areas and lack of interpretable behavior remain key obstacles. To address these, we present a physics-based neural network, based on a hybrid approach combining a social force model extended by group force (SFMG) with Multi-Layer Perceptron (MLP) to predict pedestrian trajectories considering its interaction with static obstacles, other pedestrians and pedestrian groups. We quantitatively and qualitatively evaluate the model with respect to realistic prediction, prediction performance and prediction "interpretability". Initial results suggest, the model even when solely trained on a synthetic dataset, can predict realistic and interpretable trajectories with better than state-of-the-art accuracy.