论文标题

sárközy对二次残基的猜想,ii

A conjecture of Sárközy on quadratic residues, II

论文作者

Chen, Yong-Gao, Xi, Ping

论文摘要

用$ \ Mathcal {r} _p $表示$ \ Mathbf {f} _p $的所有二次残基的集合,每个prime $ p $。对于所有足够大的$ p $,a.sárközy的猜想都没有子集$ \ mathcal {a},\ m nathcal {b} \ subseteq \ subseteq \ mathbf {f} _p {f} _p { $ \ MATHCAL {A}+\ MATHCAL {B} = \ MATHCAL {R} _p $。在本文中,我们表明,如果此类子集$ \ MATHCAL {a},\ MATHCAL {B} $确实存在,那么至少存在$(\ log 2)^{ - 1} \ sqrt p-1.6 $元素,$ \ \ \ \ \ \ \ m natercal {a}+\ \ \ \ \ \ \ \ \ \ nsiment a an \ frac {1} {4} \ sqrt {p} <| \ mathcal {a} |,| \ Mathcal {b} | <2 \ 2 \ sqrt {p} -1。 \ end {Align*}这可以完善由I.E.获得的先前界限。 Shparlinski,I.D。 Shkredov和Y.-G。陈和X.-H。 YAN。此外,我们还为$ | \ Mathcal {a} |,| \ Mathcal {b} | $建立了界限,以及添加的能量$ e(\ Mathcal {a},\ Mathcal {b})$,如果$ \ Mathcal {a}+\ \ \ \ \ \ m natercal {a}+\ m nresscal {a}

Denote by $\mathcal{R}_p$ the set of all quadratic residues in $\mathbf{F}_p$ for each prime $p$. A conjecture of A. Sárközy asserts, for all sufficiently large $p$, that no subsets $\mathcal{A},\mathcal{B}\subseteq\mathbf{F}_p$ with $|\mathcal{A}|,|\mathcal{B}|\geqslant2$ satisfy $\mathcal{A}+\mathcal{B}=\mathcal{R}_p$. In this paper, we show that if such subsets $\mathcal{A},\mathcal{B}$ do exist, then there are at least $(\log 2)^{-1}\sqrt p-1.6$ elements in $\mathcal{A}+\mathcal{B}$ that have unique representations and one should have \begin{align*} \frac{1}{4}\sqrt{p}< |\mathcal{A}|,|\mathcal{B}|< 2\sqrt{p}-1. \end{align*} This refines previous bounds obtained by I.E. Shparlinski, I.D. Shkredov, and Y.-G. Chen and X.-H. Yan. Moreover, we also establish bounds for $|\mathcal{A}|,|\mathcal{B}|$ and the additive energy $E(\mathcal{A},\mathcal{B})$ if few elements in $\mathcal{A}+\mathcal{B}$ have unique representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源