论文标题

扭曲器$ \ mathbf p^1 $上的注释

Notes on the Twistor $\mathbf P^1$

论文作者

Woit, Peter

论文摘要

值得注意的是,扭曲器$ \ mathbf p^1 $是四维时空几何和数字理论的基本对象。在欧几里得签名扭曲理论中,这是一个人描述时空点的方式。在Fargues和Scholze在本地Langlands的最新工作中,使用几何兰兰兹在Fargues-Fontaine Curve上的猜想中,Twistor $ \ Mathbf P^1 $在Infinite Prime上以这种曲线的类似作用。 这些笔记纯粹是说明性的,以数学家和物理学家都可以使用的形式写出的目的是曲折$ \ mathbf p^1 $出现的各种不同方式,通常是作为quaternions的几何凡象。

Remarkably, the twistor $\mathbf P^1$ occurs as a fundamental object in both four-dimensional space-time geometry and in number theory. In Euclidean signature twistor theory it is how one describes space-time points. In recent work by Fargues and Scholze on the local Langlands conjecture using geometric Langlands on the Fargues-Fontaine curve, the twistor $\mathbf P^1$ appears as the analog of this curve at the infinite prime. These notes are purely expository, written with the goal of explaining, in a form accessible to both mathematicians and physicists, various different ways in which the twistor $\mathbf P^1$ makes an appearance, often as a geometric avatar of the quaternions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源