论文标题

Vis-Itrack:使用低成本网络摄像头通过凝视跟踪的视觉意图

VIS-iTrack: Visual Intention through Gaze Tracking using Low-Cost Webcam

论文作者

Sabab, Shahed Anzarus, Kabir, Mohammad Ridwan, Hussain, Sayed Rizban, Mahmud, Hasan, Hasan, Md. Kamrul, Rubaiyeat, Husne Ara

论文摘要

人类意图是一种内部的心理特征,用于获取所需的信息。从包含文本或图形信息的交互式接口,感知所需信息的意图是主观的,并且与眼睛的目光密切相关。在这项工作中,我们通过使用低成本的常规网络摄像头分析实时眼目光数据来确定这种意图。我们从31位参与者的眼睛目光数据中提取了独特的功能(例如,固定数量,眼动比率),以生成一个数据集,其中包含124个视觉意图样本,以分别具有48.39%和51.61%的分布。使用此数据集,我们分析了5个分类器,包括支持向量机(SVM)(准确性:92.19%)。使用训练有素的SVM,我们研究了30名参与者之间的视觉意图变化,分布在3年龄组中,并发现年轻用户更倾向于图形内容,而老年人对文本的使用者更感兴趣。这一发现表明,实时眼睛凝视数据可能是识别视觉意图的潜在来源,分析可以设计和开发哪些意识互动界面以促进人类认知。

Human intention is an internal, mental characterization for acquiring desired information. From interactive interfaces containing either textual or graphical information, intention to perceive desired information is subjective and strongly connected with eye gaze. In this work, we determine such intention by analyzing real-time eye gaze data with a low-cost regular webcam. We extracted unique features (e.g., Fixation Count, Eye Movement Ratio) from the eye gaze data of 31 participants to generate a dataset containing 124 samples of visual intention for perceiving textual or graphical information, labeled as either TEXT or IMAGE, having 48.39% and 51.61% distribution, respectively. Using this dataset, we analyzed 5 classifiers, including Support Vector Machine (SVM) (Accuracy: 92.19%). Using the trained SVM, we investigated the variation of visual intention among 30 participants, distributed in 3 age groups, and found out that young users were more leaned towards graphical contents whereas older adults felt more interested in textual ones. This finding suggests that real-time eye gaze data can be a potential source of identifying visual intention, analyzing which intention aware interactive interfaces can be designed and developed to facilitate human cognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源