论文标题

具有未知动态的多个刚体网络的事件触发的最佳态度共识

Event-Triggered Optimal Attitude Consensus of Multiple Rigid Body Networks with Unknown Dynamics

论文作者

Jin, Xin, Mao, Shuai, Kocarev, Ljupco, Liang, Chen, Wang, Saiwei, Tang, Yang

论文摘要

在本文中,提出了一种事件触发的增强学习(RL)方法,以使具有未知动力学的多个刚体网络的最佳态度共识。首先,共识错误是通过态度动态构建的。根据Bellman最佳原则,获得了最佳控制器的隐式形式和相应的汉密尔顿 - 雅各布 - 贝尔曼(HJB)方程。由于具有增强系统,因此可以直接获得最佳控制器,而无需依赖系统动力学。其次,在更新控制器时,使用自触发的机制来减轻计算和通信负担。为了解决HJB方程难以在分析上解决的问题,提出了仅在事件触发的瞬时需要测量数据的RL方法。对于每个代理,仅设计一个神经网络来近似最佳值函数。每个神经网络仅在事件触发的瞬间更新。同时,获得了闭环系统的最终界限(UUB),并且还避免了Zeno行为。最后,在多个刚体网络上的仿真结果证明了该方法的有效性。

In this paper, an event-triggered Reinforcement Learning (RL) method is proposed for the optimal attitude consensus of multiple rigid body networks with unknown dynamics. Firstly, the consensus error is constructed through the attitude dynamics. According to the Bellman optimality principle, the implicit form of the optimal controller and the corresponding Hamilton-Jacobi-Bellman (HJB) equations are obtained. Because of the augmented system, the optimal controller can be obtained directly without relying on the system dynamics. Secondly, the self-triggered mechanism is applied to reduce the computing and communication burden when updating the controller. In order to address the problem that the HJB equations are difficult to solve analytically, a RL method which only requires measurement data at the event-triggered instants is proposed. For each agent, only one neural network is designed to approximate the optimal value function. Each neural network is updated only at the event triggered instants. Meanwhile, the Uniformly Ultimately Bounded (UUB) of the closed-loop system is obtained, and the Zeno behavior is also avoided. Finally, the simulation results on a multiple rigid body network demonstrate the validity of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源