论文标题

Bifeo的低温合成$ _ {3} $纳米颗粒具有增强的磁化强度和有希望的光催化性能在染料降解和氢进化中

Low temperature synthesis of BiFeO$_{3}$ nanoparticles with enhanced magnetization and promising photocatalytic performance in dye degradation and hydrogen evolution

论文作者

Basith, M. A., Yesmin, Nilufar, Hossain, Rana

论文摘要

在这项调查中,我们通过将水热反应温度从200 $^{\ circ} $ c增加到120 $^{\ circ} $ c来评估其可见光 - 光驱动的光催化活性以及通过水上生产的适用性,从而将水热反应温度从200 $^{\ circ} $ c增加到120 $^{\ circ} $ c合成了Bifeo $ _ {3} $纳米颗粒。 Bifeo $ _ {3} $的菱形钙钛矿结构是为水热反应温度形成的,最高为160 $^{\ circ} $ c,但是,对于进一步降低了反应温度,观察到混合的硅酸盐相。 XRD Rietveld分析,XPS分析和FESEM成像可确保在160 $^{\ Circ} $ C反应温度平均大小为20 nm时,以160 $^{\ CRICT} $^{\ CIRC} $^的形成单相和井结晶纳米颗粒的形成。在此特定反应温度下制造的纳米颗粒还表现出改善的磁化强度,泄漏电流密度降低和优异的铁电行为。这些纳米颗粒在可见范围内显示出较低的带隙(2.1 eV)的吸光度。实验观察到的带隙与使用第一原理计算的计算带隙非常吻合。与散装Bifeo $ _ {3} $以及市售的Degussa P25 Titania相比,这些纳米颗粒的有利的光催化性能能够产生两次以上的太阳能氢。值得注意的是,在不同反应温度下制备的散装材料和纳米颗粒几乎相等的实验观察到的带隙。因此,在太阳能应用中,以160 $^{\ circ} $ c反应温度制备的BFO纳米颗粒的优势不仅归因于其带隙,还归因于其他因素,例如粒径降低,出色的形态,良好的形态,良好的结晶度,大型表面与体积比,大型比率,小铁电性等。

In this investigation, we have synthesized BiFeO$_{3}$ nanoparticles by varying hydrothermal reaction temperatures from 200 $^{\circ}$C to 120 $^{\circ}$C to assess their visible-light-driven photocatalytic activity along with their applicability for hydrogen production via water splitting. The rhombohedral perovskite structure of BiFeO$_{3}$ is formed for hydrothermal reaction temperature up to 160 $^{\circ}$C, however, for a further decrement of reaction temperature a mixed sillenite phase is observed. The XRD Rietveld analysis, XPS analysis and FESEM imaging ensure the formation of single-phase and well crystalline nanoparticles at 160 $^{\circ}$C reaction temperature with 20 nm of average size. The nanoparticles fabricated at this particular reaction temperature also exhibit improved magnetization, reduced leakage current density and excellent ferroelectric behavior. These nanoparticles demonstrate considerably high absorbance in the visible range with a low bandgap (2.1 eV). The experimentally observed bandgap is in excellent agreement with the calculated bandgap using the first-principles calculations. The favorable photocatalytic performance of these nanoparticles has been able to generate more than two times of solar hydrogen compared to that produced by bulk BiFeO$_{3}$ as well as commercially available Degussa P25 titania. Notably, the experimentally observed bandgap is almost equal for both bulk material and nanoparticles prepared at different reaction temperatures. Therefore, in solar energy applications, the superiority of BFO nanoparticles prepared at 160 $^{\circ}$C reaction temperature may be attributed not only to solely their bandgap but also to other factors, such as reduced particle size, excellent morphology, well crystallinity, large surface to volume ratio, ferroelectricity and so on.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源