论文标题
用光谱指数图探测在事件范围内积聚黑洞的光谱指数图
Probing Plasma Physics with Spectral Index Maps of Accreting Black Holes on Event Horizon Scales
论文作者
论文摘要
事件地平线望远镜(EHT)合作制作了我们银河系中心和椭圆星系M87中心的超大质量黑洞的首次解决图像。随着技术和分析管道的改善,很快就有可能在事件范围尺度上产生黑洞积聚流的光谱指数图。在这项工作中,我们通过将一般相对论辐射传递(GRRT)代码ipole应用于一套一般相对论磁性水力动力学(GRMHD)模拟的套件来预测M87*和SGR A*的光谱指数图。我们分析表明,光谱指数随着磁场强度,电子温度和光学深度的增加而增加。因此,几乎所有模型中的光谱指数图随着半径增加而增加,因为所有这些数量往往在事件范围内最大化。此外,光子环大地学表现出更多的正频谱指数,因为它们以最极端的血浆条件采样了积聚流的最内向区域。光谱指数图对高度不确定的血浆加热处方(电子温度和分布函数)敏感。但是,如果我们对等离子体物理学的这些方面的理解可以被拧紧,那么即使在230 GHz约230 GHz的空间未解决的光谱指数也可以用来区分模型。特别是,由于特征磁场强度和发射等离子体的温度差异,标准和正常进化(SANE)流往往表现出比磁性停滞的磁盘(MAD)流相比表现出更多的负光谱指数。
The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code IPOLE to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximised near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate between models. In particular, Standard and Normal Evolution (SANE) flows tend to exhibit more negative spectral indices than Magnetically Arrested Disk (MAD) flows due to differences in the characteristic magnetic field strength and temperature of emitting plasma.