论文标题

临床MRI系统中白质扩散标准模型的可重复性

Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems

论文作者

Coelho, Santiago, Baete, Steven H., Lemberskiy, Gregory, Ades-Aaron, Benjamin, Barrol, Genevieve, Veraart, Jelle, Novikov, Dmitry S., Fieremans, Els

论文摘要

估计和轴外微结构参数(例如体积分数和扩散性)一直是MRI脑微观结构成像中的主要努力之一。在白质中扩散的标准模型(SM)基于嵌入局部各向异性外轴外空间中的不可渗透的狭窄圆柱体的各种建模方法。但是,从一组常规扩散MRI(DMRI)测量值中估算SM参数是错误的。多维DMRI有助于解决估计性变性,但仍需要临床可行的采集来产生可靠的参数图。在这里,我们找到了最佳的多维协议,方法是最大程度地减少两个3T扫描仪的基于机器学习的SM参数估计的均值误差,其梯度强度为$ 40 $ $ 40 $和$ 80 \,\ unit \ unit {mt/mt/m} $。我们通过两次在两次扫描仪上扫描20名健康志愿者,评估15分钟最佳方案的扫描仪和扫描仪之间的可重复性。除自由水分分的所有SM参数的变化系数均为$ \ Lessim 10 \%$ voxelwise和$ 1-4 \%\%$ $,用于其区域平均值。由于所达到的SM可重现性结果与常规扩散张量成像相似,因此我们的结果可以在神经科学研究和诊所中对白质微观结构的体内绘制稳健。

Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of $40$ and $80\,\unit{mT/m}$. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are $\lesssim 10\%$ voxelwise and $1-4 \%$ for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源