论文标题

纹理网格质量评估:大规模数据集和深度学习的质量指标

Textured Mesh Quality Assessment: Large-Scale Dataset and Deep Learning-based Quality Metric

论文作者

Nehmé, Yana, Delanoy, Johanna, Dupont, Florent, Farrugia, Jean-Philippe, Callet, Patrick Le, Lavoué, Guillaume

论文摘要

在过去的十年中,3D图形已变得非常详细,以模仿现实世界,从而爆炸了它们的规模和复杂性。某些应用程序和设备约束需要简化和/或有损压缩,这可以降低其视觉质量。因此,为了确保最佳的体验质量(QOE),重要的是要评估视觉质量,以准确推动压缩并找到视觉质量和数据大小之间的正确折衷。在这项工作中,我们专注于对纹理3D网格的主观和客观质量评估。我们首先建立了一个大规模数据集,其中包括55个以几何形状,颜色和语义复杂性来定量表征的源模型,并因在网格的几何形状,纹理映射和纹理图像上应用的5种类型的基于压缩的扭曲的组合而损坏。该数据集包含超过343K扭曲的刺激。我们提出了一种方法,可以选择一个具有挑战性的3000个刺激子集,并在该刺激中收集了148929个质量判断,其中4500多名参与者进行了大规模的众包主观实验。提出了利用我们的主题评级数据集,为3D图形提供了基于学习的质量指标。我们的度量标准在我们的纹理网格数据集以及带有顶点颜色的扭曲网格数据集上演示了最先进的结果。最后,我们提出了指标和数据集的应用,以探讨失真相互作用和内容特征对压缩纹理网格感知质量的影响。

Over the past decade, 3D graphics have become highly detailed to mimic the real world, exploding their size and complexity. Certain applications and device constraints necessitate their simplification and/or lossy compression, which can degrade their visual quality. Thus, to ensure the best Quality of Experience (QoE), it is important to evaluate the visual quality to accurately drive the compression and find the right compromise between visual quality and data size. In this work, we focus on subjective and objective quality assessment of textured 3D meshes. We first establish a large-scale dataset, which includes 55 source models quantitatively characterized in terms of geometric, color, and semantic complexity, and corrupted by combinations of 5 types of compression-based distortions applied on the geometry, texture mapping and texture image of the meshes. This dataset contains over 343k distorted stimuli. We propose an approach to select a challenging subset of 3000 stimuli for which we collected 148929 quality judgments from over 4500 participants in a large-scale crowdsourced subjective experiment. Leveraging our subject-rated dataset, a learning-based quality metric for 3D graphics was proposed. Our metric demonstrates state-of-the-art results on our dataset of textured meshes and on a dataset of distorted meshes with vertex colors. Finally, we present an application of our metric and dataset to explore the influence of distortion interactions and content characteristics on the perceived quality of compressed textured meshes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源