论文标题

凝结雅各布的适应性

Condensation Jacobian with Adaptivity

论文作者

Weidner, Nicholas J., Kim, Theodore, Sueda, Shinjiro

论文摘要

我们提出了一种新方法,该方法允许在动态模拟中进行大量时间步骤。我们的方法Conjac基于凝结,这是一种通过剩余的自由度来表达它们来消除许多自由度(DOF)的技术。在这项工作中,我们选择一个节点的子集为动态节点,并通过定义从这些选择的动态DOF的速度的线性映射到剩余的测量DOF速度的线性映射来应用速度级别的冷凝。然后,我们使用此映射来得出仅涉及动态DOF的减少运动方程。我们还得出了一个新颖的稳定项,使我们能够使用复杂的非线性材料模型。 CONJAC在较大的时间步长保持稳定,表现出高度动态的运动,并显示最小的数值阻尼。在与子空间方法形成鲜明对比的情况下,Conjac在达到静态状态后提供的配置与完整空间方法完全相同。此外,Conjac可以自动选择要动态或过度模拟对象的部分。最后,Conjac与各种中等至僵硬的材料一起工作,支持各向异性和异质性,处理拓扑变化,并可以与包括刚体动态在内的现有求解器结合使用。

We present a new approach that allows large time steps in dynamic simulations. Our approach, ConJac, is based on condensation, a technique for eliminating many degrees of freedom (DOFs) by expressing them in terms of the remaining degrees of freedom. In this work, we choose a subset of nodes to be dynamic nodes, and apply condensation at the velocity level by defining a linear mapping from the velocities of these chosen dynamic DOFs to the velocities of the remaining quasistatic DOFs. We then use this mapping to derive reduced equations of motion involving only the dynamic DOFs. We also derive a novel stabilization term that enables us to use complex nonlinear material models. ConJac remains stable at large time steps, exhibits highly dynamic motion, and displays minimal numerical damping. In marked contrast to subspace approaches, ConJac gives exactly the same configuration as the full space approach once the static state is reached. Furthermore, ConJac can automatically choose which parts of the object are to be simulated dynamically or quasistatically. Finally, ConJac works with a wide range of moderate to stiff materials, supports anisotropy and heterogeneity, handles topology changes, and can be combined with existing solvers including rigid body dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源