论文标题

纳米力学系统中的争夺和量子反馈

Scrambling and quantum feedback in a nanomechanical system

论文作者

Singh, A. K., Sachan, Kushagra, Chotorlishvili, L., V., Vipin, Mishra, Sunil K.

论文摘要

迅速纠缠在系统上的问题引起了至关重要的兴趣。在这方面,超时有序的相关器(OTOC)是纠缠扩散过程的定量度量。特别的兴趣涉及晶格系统中量子相关性的传播,{\ it,例如},自旋链。在开创性的D. A. Roberts,D。Stanford和L. Susskind,J。HighEnergh Phys。 03,051,(2015)引入了Otoc半径的概念。 OTOC的半径定义了纠缠的扩散到达前线。超越此半径操作员通勤。在目前的工作中,我们提出了一个两个纳米力学系统的模型,再加上两个氮 - 胶囊(NV)中心旋转。振荡器直接彼此耦合,而NV旋转则没有。因此,只有通过从第一个NV旋转到第一个振荡器的量子反馈才能引起NV旋转之间的相关性,并通过直接耦合从第一个振荡器转移到第二个振荡器。因此,NV旋转之间的非零OTOC量化了量子反馈的强度。我们表明,NV旋转无法对经典非线性振荡器发挥量子反馈。我们还使用线性量子谐波振荡器间接地讨论了固有的量子情况,将两个旋转间接耦合,并验证振荡器的经典极限,OTOC消失了。

The question of how swiftly entanglement spreads over a system has attracted vital interest. In this regard, the out-of-time ordered correlator (OTOC) is a quantitative measure of the entanglement spreading process. Particular interest concerns the propagation of quantum correlations in the lattice systems, {\it e.g.}, spin chains. In a seminal paper D. A. Roberts, D. Stanford and L. Susskind, J. High Energy Phys. 03, 051, (2015) the concept of the OTOC's radius was introduced. The radius of the OTOC defines the front line reached by the spread of entanglement. Beyond this radius operators commute. In the present work, we propose a model of two nanomechanical systems coupled with two Nitrogen-vacancy (NV) center spins. Oscillators are coupled to each other directly while NV spins are not. Therefore, the correlation between the NV spins may arise only through the quantum feedback exerted from the first NV spin to the first oscillator and transferred from the first oscillator to the second oscillator via the direct coupling. Thus nonzero OTOC between NV spins quantifies the strength of the quantum feedback. We show that NV spins cannot exert quantum feedback on classical nonlinear oscillators. We also discuss the inherently quantum case with a linear quantum harmonic oscillator indirectly coupling the two spins and verify that in the classical limit of the oscillator, the OTOC vanishes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源