论文标题

带有小数据的个性化视觉编码模型构建

Personalized visual encoding model construction with small data

论文作者

Gu, Zijin, Jamison, Keith, Sabuncu, Mert, Kuceyeski, Amy

论文摘要

编码预测刺激大脑反应模式的模型是捕获自下而上神经系统中变异性与个人行为或病理状态之间这种关系的一种方法。但是,他们通常需要大量的培训数据才能达到最佳精度。在这里,我们建议并测试一种替代性个性化的集合编码模型方法,以利用现有的编码模型,为具有相对较小的刺激性反应数据的新个人创建编码模型。我们表明,这些个性化的合奏编码模型,这些模型经过少量数据的训练,即〜300个图像响应对,实现了与对同一个人的约20,000张图像响应对训练的模型没有什么不同的准确性。重要的是,个性化的合奏编码模型保留了图像响应关系中个体间变异性的模式。此外,我们表明,通过在具有不同扫描仪和实验设置的新型个体中验证一组前瞻性收集的图像响应数据,可以通过验证域的转移范围。最后,我们在最近开发的神经原框架内使用个性化的集合编码模型来生成旨在最大程度地提高特定个体特定区域激活的最佳刺激。我们表明,使用整体编码模型的Neurogen复制了面部区域中对动物与人面部图像的响应对动物与人面部图像的反应。我们的方法表明,使用先前收集的,深入采样的数据来有效地创建准确,个性化的编码模型,并随后对在不同的实验条件下扫描的新个人进行个性化的最佳合成图像。

Encoding models that predict brain response patterns to stimuli are one way to capture this relationship between variability in bottom-up neural systems and individual's behavior or pathological state. However, they generally need a large amount of training data to achieve optimal accuracy. Here, we propose and test an alternative personalized ensemble encoding model approach to utilize existing encoding models, to create encoding models for novel individuals with relatively little stimuli-response data. We show that these personalized ensemble encoding models trained with small amounts of data for a specific individual, i.e. ~300 image-response pairs, achieve accuracy not different from models trained on ~20,000 image-response pairs for the same individual. Importantly, the personalized ensemble encoding models preserve patterns of inter-individual variability in the image-response relationship. Additionally, we show the proposed approach is robust against domain shift by validating on a prospectively collected set of image-response data in novel individuals with a different scanner and experimental setup. Finally, we use our personalized ensemble encoding model within the recently developed NeuroGen framework to generate optimal stimuli designed to maximize specific regions' activations for a specific individual. We show that the inter-individual differences in face areas responses to images of animal vs human faces observed previously is replicated using NeuroGen with the ensemble encoding model. Our approach shows the potential to use previously collected, deeply sampled data to efficiently create accurate, personalized encoding models and, subsequently, personalized optimal synthetic images for new individuals scanned under different experimental conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源