论文标题

广义分数分布:两参数离散分布准确地描述了经验质量主观实验的响应

Generalised Score Distribution: A Two-Parameter Discrete Distribution Accurately Describing Responses from Quality of Experience Subjective Experiments

论文作者

Nawała, Jakub, Janowski, Lucjan, Ćmiel, Bogdan, Rusek, Krzysztof, Pérez, Pablo

论文摘要

传统地分析了多媒体质量评估(MQA)实验的主观响应,并使用不适合这些响应的数据类型的方法分析。此外,获得主观响应是资源密集的。因此,允许重复使用现有响应的方法将是有益的。应用不当数据分析方法导致难以解释结果。这鼓励得出错误的结论。在现有的主观响应的基础上是资源友好的,并有助于开发基于机器学习(ML)的视觉质量预测指标。我们表明,使用离散模型分析MQA主观实验的响应是可行的。我们指出,我们提出的广义分数(GSD)正确地描述了在典型的MQA实验中观察到的响应分布。我们强调了GSD参数的解释性,并指出GSD在引导时基于样本经验分布的方法优于该方法。我们证明,GSD在拟合优点和自举功能方面都胜过最先进的模型。为此,我们分析了30多个主观实验的超过一百万个主观响应。此外,我们制作的代码通过我们的GitHub存储库提供了GSD模型和相关分析:https://github.com/qub3k/subjective-exp-consistency-check

Subjective responses from Multimedia Quality Assessment (MQA) experiments are conventionally analysed with methods not suitable for the data type these responses represent. Furthermore, obtaining subjective responses is resource intensive. A method allowing reuse of existing responses would be thus beneficial. Applying improper data analysis methods leads to difficult to interpret results. This encourages drawing erroneous conclusions. Building upon existing subjective responses is resource friendly and helps develop machine learning (ML) based visual quality predictors. We show that using a discrete model for analysis of responses from MQA subjective experiments is feasible. We indicate that our proposed Generalised Score Distribution (GSD) properly describes response distributions observed in typical MQA experiments. We highlight interpretability of GSD parameters and indicate that the GSD outperforms the approach based on sample empirical distribution when it comes to bootstrapping. We evidence that the GSD outcompetes the state-of-the-art model both in terms of goodness-of-fit and bootstrapping capabilities. To do all of that we analyse more than one million subjective responses from more than 30 subjective experiments. Furthermore, we make the code implementing the GSD model and related analyses available through our GitHub repository: https://github.com/Qub3k/subjective-exp-consistency-check

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源