论文标题
相对论无碰撞电子 - 离子旋律冲击的微物理学
Microphysics of Relativistic Collisionless Electron-ion-positron Shocks
论文作者
论文摘要
我们执行粒子中的模拟,以阐明用电子旋律对的相对论弱磁性冲击的微物理学。研究了各种外部磁化$σ\ sillsim 10^{ - 4} $和配对的$ z_ \ pm \ pm \ lysesim 10 $,其中$ z_ \ pm $是每个离子的已加载电子和正电子的数量。我们找到以下内容。 (1)当$σ$超过临界值$σ_{\ rm l} $时,冲击是由平均字段中的离子Larmor Gyration介导的,该值以$ z_ \ pm $降低。在$σ\Lessimσ_ {\ rm l} $上,电击是由自构建的微型燃料场中的粒子散射介导的,其强度和比例的强度和比例随$ z_ \ pm $降低,导致较低$σ_{\ rm lm l} $。 (2)震后对携带的能量分数在上游离子能量的20%至50%之间稳健。每个后震动电子的平均能量缩放为$ \叠加{ (3)配对加载在磁化下抑制非热离子加速度,低至$σ\约5 \ times 10^{ - 6} $。然后,离子本质上以平均能量$ \叠加{e} _ {\ rm i} $的热量变为热,而电子形成非热尾巴,从$ e \ sim(z_ \ pm + 1)^{ - 1} { - 1} \ 1} \ edimalline {e} {e} {当$σ= 0 $时,粒子加速会通过在冲击演化后期填充前体的强烈磁腔的形成增强。在这里,非热离子和电子的最大能量在模拟过程中保持增长。除了模拟之外,我们开发了与数值结果一致的理论估计值。我们的发现对早期伽马射线爆发余潮的模型具有重要意义。
We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizations $σ\lesssim 10^{-4}$ and pair-loading factors $Z_\pm \lesssim 10$ are studied, where $Z_\pm$ is the number of loaded electrons and positrons per ion. We find the following. (1) The shock becomes mediated by the ion Larmor gyration in the mean field when $σ$ exceeds a critical value $σ_{\rm L}$ that decreases with $Z_\pm$. At $σ\lesssimσ_{\rm L}$ the shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease with $Z_\pm$, leading to lower $σ_{\rm L}$. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales as $\overline{E}_{\rm e}\propto (Z_\pm+1)^{-1}$. (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low as $σ\approx 5\times 10^{-6}$. The ions then become essentially thermal with mean energy $\overline{E}_{\rm i}$, while electrons form a nonthermal tail, extending from $E\sim (Z_\pm + 1)^{-1}\overline{E}_{\rm i}$ to $\overline{E}_{\rm i}$. When $σ= 0$, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here, the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows.